Б. Структура дезоксирибонуклеиновой кислоты (ДНК). Нуклеиновые кислоты: история исследования, описание Химические свойства РНК

Содержание статьи

НУКЛЕИНОВЫЕ КИСЛОТЫ – биологические полимерные молекулы, хранящие всю информацию об отдельном живом организме, определяющие его рост и развитие, а также наследственные признаки, передаваемые следующему поколению. Нуклеиновые кислоты есть ядрах клеток всех растительных и животных организмов, что определило их название (лат. nucleus – ядро).

Состав полимерной цепи нуклеиновых кислот.

Полимерная цепь нуклеиновых кислот собрана из фрагментов фосфорной кислоты Н 3 РО 3 и фрагментов гетероциклических молекул, представляющих собой производные фурана. Есть лишь два вида нуклеиновых кислот, каждая построена на основе одного из двух типов таких гетероциклов – рибозы или дезоксирибозы (рис. 1).

Рис. 1. СТРОЕНИЕ РИБОЗЫ И ДЕЗОКСИРИБОЗЫ .

Название рибоза (от лат. Rib – ребро, скрепка) имеет окончание – оза, что указывает на принадлежность к классу сахаров (например, глюкоза, фруктоза). У второго соединения нет группы ОН (окси-группа), которая в рибозе отмечена красным цветом. В связи с этим втрое соединение называют дезоксирибозой, т.е., рибоза, лишенная окси-группы.

Полимерная цепь, построенная из фрагментов рибозы и фосфорной кислоты, представляет собой основу одной из нуклеиновых кислот –рибонуклеиновой кислоты (РНК). Термин «кислота» в названии этого соединения употреблен потому, что одна из кислотных групп ОН фосфорной кислоты остается незамещенной, что придает всему соединению слабокислый характер. Если вместо рибозы в образовании полимерной цепи участвует дезоксирибоза, то образуется дезоксирибонуклеиновая кислота, для которой повсеместно принято широко известное сокращение ДНК.

Структура ДНК.

Молекула ДНК служит отправной точкой в процессе роста и развития организма. На рис. 2 показано, как объединяются в полимерную цепь два типа чередующихся исходных соединений, показан не способ синтеза, а принципиальная схема сборки молекулы ДНК.

В окончательном варианте полимерная молекула ДНК содержит в боковом обрамлении азотсодержащие гетероциклы. В образовании ДНК участвуют четыре типа таких соединений, два из них представляют собой шестичленные циклы, а два – конденсированные циклы, где шестичленное кольцо спаяно с пятичленным (рис. 3).

Рис. 3. СТРОЕНИЕ АЗОТСОДЕРЖАЩИХ ГЕТЕРОЦИКЛОВ , входящих в состав ДНК

На втором этапе сборки к свободным группам ОН дезоксирибозы присоединяются показанные выше азотсодержащие гетероциклические соединения, образуя у полимерной цепи боковые подвески (рис. 4).

Присоединенные к полимерной цепи молекулы аденина, тимина, гуанина и цитозина обозначают первыми буквами названий исходных соединений, то есть, А , Т , Г и Ц .

Сама полимерная цепь ДНК имеет определенную направленность – при мысленном продвижении вдоль молекулы в прямом и обратном направлении одни и те же группировки, входящие в состав цепи, встречаются на пути в разной последовательности. При движении в одном направлении от одного атома фосфора к другому вначале на пути следования идет группа СН 2 , а затем две группы СН (атомы кислорода можно не принимать во внимание), при движении в противоположном направлении последовательность этих групп будет обратной (рис. 5).

Рис. 5. НАПРАВЛЕННОСТЬ ПОЛИМЕРНОЙ ЦЕПИ ДНК . При описании того, в каком порядке чередуются присоединенные гетероциклы, принято использовать прямое направление, то есть от группы СН 2 к группам СН.

Само понятие «направление цепи» помогает понять то, как располагаются две цепи ДНК при их объединении, а также имеет прямое отношение к синтезу белка.

На следующей стадии две молекулы ДНК объединяются, располагаясь таким образом, чтобы начало и концы цепей были направлены в противоположные стороны. В этом случае гетероциклы двух цепей обращены навстречу друг другу и оказываются расположенными неким оптимальным образом, имеется в виду, что между парами группировок С=О и NH 2 , а также между є N и NH=, входящими в состав гетероциклов, возникают водородные связи (см . ВОДОРОДНАЯ СВЯЗЬ). На рис. 6 показано, как располагаются две цепи относительно друг друга и как при этом возникают водородные связи между гетероциклами. Самая важная деталь – состоит в том, что пары, связанные водородными связями, жестко определены: фрагмент А всегда взаимодействует с Т , а фрагмент Г – всегда с Ц . Строго определенная геометрия этих групп приводит к тому, что эти пары исключительно точно подходят друг другу (как ключ к замку), пара А-Т связана двумя водородными связями, а пара Г-Ц – тремя связями.

Водородные связи заметно слабее обычных валентных связей, но из-за большого их количества вдоль всей полимерной молекулы соединение двух цепей становится достаточно прочным. В молекуле ДНК содержится десятки тысяч групп А , Т , Г и Ц и порядок их чередования в пределах одной полимерной молекулы может быть различным, например, на определенном участке цепи последовательность может иметь вид: -А -А -Т -Г -Ц -Г -А -Т -. Поскольку взаимодействующие группы строго определены, то на противолежащем участке второй полимерной молекулы обязательно будет последовательность –Т -Т -А -Ц -Г -Ц -Т -А -. Таким образом, зная порядок расположения гетероциклов в одной цепи, можно указать их размещение в другой цепи. Из этого соответствия следует, что суммарно в сдвоенной молекуле ДНК количество групп А равно количеству групп Т , а количество групп Г – количеству Ц (правило Э.Чаргаффа).

Две молекулы ДНК, связанные водородными связями, показаны на рис. 5 в виде двух плоско лежащих цепей, однако в действительности они располагаются иным образом. Истинное направление в пространстве всех связей, определяемое валентными углами и стягивающими водородными взаимодействиями, приводит к определенном изгибам полимерных цепей и повороту плоскости гетероциклов, что приблизительно показано в первом видеофрагменте рис. 7 с помощью структурной формулы. Гораздо точнее всю пространственную конструкцию можно передать только с помощью объемных моделей (рис. 7, второй видеофрагмент). При этом возникает сложная картина, поэтому принято использовать упрощенные изображения, которые особенно широко применяют при изображении структуры нуклеиновых кислот или белков . В случае нуклеиновых кислот полимерные цепи изображают в форме плоских лент, а гетероциклические группировки А , Т , Г и Ц – в виде боковых стержней или простых валентных штрихов, имеющих различные цвета, либо содержащих на конце буквенные обозначения соответствующих гетероциклов (рис. 7, третий видеофрагмент).

Во время поворота всей конструкции вокруг вертикальной оси (рис. 8) отчетливо видна спиральная форма двух полимерных молекул, которые как бы навиты на поверхность цилиндра, это широко известная двойная спираль ДНК.

При таком упрощенном изображении не исчезает основная информация – порядок чередования группировки А , Т , Г и Ц , определяющий индивидуальность каждого живого организма, вся информация записана четырехбуквенным кодом.

Строение полимерной цепи и обязательное присутствие четырех типов гетероциклов однотипно для всех представителей живого мира. У всех животных и высших растений количество пар А Т всегда несколько больше, чем пар Г Ц . Отличие ДНК млекопитающих от ДНК растений в том, что у млекопитающих пара А Т на всем протяжении цепи встречается ненамного чаще (приблизительно в 1,2 раза), чем пара Г Ц . В случае растений предпочтительность первой пары гораздо более заметна (приблизительно в 1,6 раза).

ДНК – одна из самых больших известных на сегодня полимерных молекул, у некоторых организмов ее полимерная цепь состоит из сотен миллионов звеньев. Длина такой молекулы достигает нескольких сантиметров, это очень большая величина для молекулярных объектов. Т.к. поперечное сечение молекулы всего 2 нм (1нм = 10 –9 м), то ее пропорции можно сопоставить с железнодорожным рельсом длиной в десятки километров.

Химические свойства ДНК.

В воде ДНК образует вязкие растворы, при нагревании таких растворов до 60° С или при действии щелочей двойная спираль распадается на две составляющие цепи, которые вновь могут объединиться, если вернуться к исходным условиям. В слабокислых условиях происходит гидролиз, в результате частично расщепляются фрагменты –Р-О-СН 2 - с образованием фрагментов –Р-ОН и НО-СН 2 , соответственно результате образуются мономерные, димерные (сдвоенные) или тримерные (утроенные) кислоты, представляющие собой звенья, из которых была собрана цепь ДНК (рис. 9).

Рис. 9. ФРАГМЕНТЫ, ПОЛУЧАЕМЫЕ ПРИ РАСЩЕПЛЕНИИ ДНК .

Более глубокий гидролиз позволяет отделить участки дезоксирибозы от фосфорной кислоты, а также группировку Г от дезоксирибозы, т.е., более детально разобрать молекулу ДНК на составляющие компоненты. При действии сильных кислот (помимо распада фрагментов –Р(О)-О-СН 2 -) отщепляются и группировки А и Г . Действие иных реагентов (например, гидразина) позволяет отделить группировки Т и Ц . Более деликатное расщепление ДНК на компоненты проводят с помощью биологического препарата – дезоксирибонуклеазы, выделяемой из поджелудочной железы (окончание -аза всегда указывает на то, что данное вещество представляет собой катализатор биологического происхождения – фермент). Начальная часть названия – дезоксирибонуклеаза – указывает, какое именно соединение расщепляет этот фермент. Все указанные способы расщепления ДНК ориентированы, в первую очередь, на детальный анализ ее состава.

Самая важная информация, содержащаяся в молекуле ДНК, – порядок чередования групп А , Т , Г и Ц , ее получают с помощью специально разработанных методик. Для этого создан широкий набор ферментов, которые находят в молекуле ДНК строго определенную последовательность, например, Ц -T -Г -Ц -A -Г (а также соответствующую ей последовательность на противоположной цепи Г -А -Ц -Г -Т -Ц ) и вычленяют ее из состава цепи. Таким свойством обладает фермент Pst I (торговое наименование, оно образуется из названия того микроорганизма P rovidencia st uartii, из которого получают этот фермент). При использовании другого фермента Pal I удается найти последовательность Г -Г -Ц -Ц . Далее сопоставляются результаты, полученные при действии широкого набора различных ферментов по заранее разработанной схеме, в результате удается определить последовательность таких групп на определенном участке ДНК. Сейчас подобные методики доведены до стадии широкого применения, они используются в самых разнообразных областях, далеких от научных биохимических исследований, например, при идентификации останков живых организмов или установлении степени родства.

Структура РНК

во многом напоминает ДНК, отличие в том, что в основной цепи фрагменты фосфорной кислоты чередуются с рибозой, а не с дезоксирибозой (рис.). Второе отличие – к боковому обрамлению присоединяется гетероцикл урацил (У ) вместо тимина (Т ), остальные гетероциклы А , Г и Ц те же, что у ДНК. Урацил отличается от тимина отсутствием метильной группы, присоединенной к циклу, на рис. 10 эта метильная группа выделена красным цветом.

Рис. 10. ОТЛИЧИЕ ТИМИНА ОТ УРАЦИЛА – отсутствие у второго соединения метильной группы, выделенной в тимине красным цветом.

Фрагмент молекулы РНК показан на рис. 11, порядок следования группировок А , У , Г и Ц , а также их количественное соотношение может быть различным.

Рис.11. ФРАГМЕНТ МОЛЕКУЛЫ РНК . Основное отличие от ДНК – наличие группировок ОН в рибозе (красный цвет) и фрагмента урацила (синий цвет).

Полимерная цепь РНК приблизительно в десять раз короче, чем у ДНК. Дополнительное отличие в том, что молекулы РНК не объединяются в двойные спирали, состоящие из двух молекул, а обычно существуют в виде одиночной молекулы, которая на некоторых участках может образовывать сама с собой двухцепные спиральные фрагменты, чередующиеся с линейными участками. На спиральных участках взаимодействие пар соблюдается также строго, как в ДНК. Пары, связанные водородными связями и формирующие спираль (А -У и Г -Ц ), возникают на тех участках, где расположение групп оказывается благоприятным для такого взаимодействия (рис. 12).

Для подавляющего большинства живых организмов количественное содержание пар А -У больше чем Г -Ц , у млекопитающих в 1,5–1,6 раза, у растений – в 1,2 раза. Существует несколько типов РНК, роли, которых в живом организме различны.

Химические свойства РНК

напоминают свойства ДНК, однако наличие дополнительных групп ОН в рибозе и меньшее (в сравнении с ДНК) содержание стабилизированных спиральных участков делает молекулы РНК химически более уязвимыми. При действии кислот или щелочей основные фрагменты полимерной цепи Р(О)-О-СН 2 легко гидролизуются, группировки А , У , Г и Ц отщепляются легче. Если нужно получить мономерные фрагменты (подобные тем, что на рис. 9), сохранив при этом химически связанные гетероциклы, используют деликатно действующие ферменты, называемые рибонкулеазами.

Участие ДНК и РНК в синтезе белков

– одна из основных функций нуклеиновых кислот. Белки – важнейшие компоненты каждого живого организма. Мышцы, внутренние органы, костная ткань, кожный и волосяной покров млекопитающих состоят из белков . Это полимерные соединения, которые собираются в живом организме из различных аминокислот. В такой сборке управляющую роль играют нуклеиновые кислоты, процесс проходит в две стадии, причем на каждой из них определяющий фактор – взаимоориентация азотсодержащих гетероциклов ДНК и РНК.

Основная задача ДНК – хранить записанную информацию и предоставлять в тот момент, когда начинается синтез белков. В связи с этим понятна повышенная химическая устойчивость ДНК в сравнении с РНК. Природа позаботилась о том, чтобы сохранить по возможности основную информацию неприкосновенной.

На первой стадии часть двойной спирали раскрывается, освободившиеся ветви расходятся, и на группах А , Т , Г и Ц , оказавшихся доступными, начинается синтез РНК, называемой матричной РНК, поскольку она как копия с матрицы точно воспроизводит информацию, записанную на раскрывшемся участке ДНК. Напротив группы А , принадлежащей молекуле ДНК, располагается фрагмент будущей матричной РНК, содержащий группу У , все остальные группы располагаются друг напротив друга в точном соответствии с тем, как это происходит при образовании двойной спирали ДНК (рис. 13).

По указанной схеме образуются полимерная молекула матричной РНК, содержащая несколько тысяч мономерных звеньев.

На втором этапе матричная ДНК перемещается из ядра клетки в околоядерное пространство – цитоплазму. К полученной матричной РНК подходят так называемые транспортные РНК, которые несут с собой (транспортируют) различные аминокислоты. Каждая транспортная РНК, нагруженная определенной аминокислотой, приближается к строго обусловленному участку матричной РНК, нужное место обнаруживается с помощью все того же принципа взаимосоответствия групп А

Важная деталь состоит в том, что временное взаимодействие матричной и транспортной РНК проходит всего по трем группам, например, к триаде Ц -Ц -У матричной кислоты может подойти только соответствующая ей тройка Г -Г -А транспортной РНК, которая непременно несет с собой аминокислоту глицин (рис. 14). Точно также к триаде Г -А -У может приблизиться лишь набор Ц -У -А , транспортирующий только аминокислоту лейцин. Таким образом, последовательность групп в матричной РНК указывает, в каком порядке должны соединяться аминокислоты. Кроме того, система содержит в закодированном виде дополнительные регулирующие правила, некоторые последовательности из трех групп матричной РНК указывает на то, что в этом месте синтез белка должен остановиться, т.е. молекула достигла необходимой длины.

Показанный на рис. 14 синтез белка проходит с участием еще одного – третьего вида РНКислот, они входят в состав рибосом и потому их называют рибосомными. Рибосома, представляющая собой ансамбль определенных белков рибосомных РНК, обеспечивает взаимодействие матричной и транспортной РНК, играя роль конвейерной ленты, которая передвигает матричную РНК на один шаг после того, как произошло соединение двух аминокислот.

Основной смысл двухстадийной схемы, показанной на рис. 13 и 14, состоит в том, что полимерная цепь белковой молекулы собирается из различных аминокислот в намеченном порядке и строго по тому плану, который был записан в закодированном виде на определенном участке ДНК. Таким образом, ДНК представляет собой отправную точку всего этого запрограммированного процесса.

В процессе жизнедеятельности белки постоянно расходуются, и потому они регулярно воспроизводятся по описанной схеме, весь синтез белковой молекулы, состоящей из сотен аминокислот, проходит в живом организме приблизительно в течение одной минуты.

Первые исследования нуклеиновых кислот были проведены во второй половине 19 в., понимание того, что в ДНК зашифрована вся информация о живом организме, пришло в середине 20 в., структуру двойной спирали ДНК установили в 1953 Дж.Уотсон и Ф.Крик на основании данных рентгеноструктурного анализа, что признано крупнейшим научным достижением 20 столетия. В середине 70-х годов 20 в. появились методики расшифровки детальной структуры нуклеиновых кислот, а вслед за тем были разработаны способы их направленного синтеза. Сегодня ясны далеко не все процессы, происходящие в живых организмах с участием нуклеиновых кислот, и сегодня это одна из самых интенсивно развивающихся областей науки.

Михаил Левицкий

В живом организме присутствуют три основные макромолекулы: белки и нуклеиновые кислоты двух видов. Благодаря им поддерживается жизнедеятельность и правильное функционирование всего организма. Что такое нуклеиновые кислоты? Для чего они необходимы? Об этом - далее в статье.

Общая информация

Нуклеиновая кислота - это биополимер, органическое соединение с высокой молекулярностью, которое образовано остатками нуклеотидов. Передача от поколения к поколению всей генетической информации - главная задача, которую выполняют нуклеиновые кислоты. Презентация, которая представлена ниже, раскроет данное понятие более подробно.

История исследования

Первый изученный нуклеотид был выделен из мышц быка в 1847-м году и назван «инозиновая кислота». В результате изучения химического строения было выявлено, что она является рибозид-5′-фосфатом и хранит в себе N-гликозидную связь.В 1868-м году было обнаружено вещество под названием «нуклеин». Открыл его швейцарский химик Фридрих Мишер во время исследований некоторых биологических субстанций. В состав этого вещества входил фосфор. Соединение обладало кислотными свойствами и не подвергалось разложению под влиянием протеолитических ферментов.

Вещество получило формулу C29H49N9O22P3.Предположение об участии нуклеина в процессе передачи наследственной информации было выдвинуто в результате обнаружения аналогичности его химического состава с хроматином. Этот элемент является основным компонентом хромосом.Термин «нуклеиновая кислота» впервые был введен в 1889-м году Рихардом Альтманом. Именно он стал автором способа получения этих веществ без белковых примесей.В ходе исследования щелочного гидролиза нуклеиновых кислот Левин и Жакоб выявили основные компоненты продуктов этого процесса. Ими оказались нуклеотиды и нуклеозиды. В 1921-м году Левин предположил, что ДНК имеет тетрануклеотидное строение. Однако эта гипотеза не нашла подтверждения и оказалась ошибочной.

В результате этого появилась новая возможность изучения строения соединений.В 1940-м году Александер Тодд вместе со своей научной группой начинает широкомасштабное изучение химических свойств, строения нуклеотидов и нуклеозидов, в результате чего в 1957-м году был награжден Нобелевской премией.А американский биохимик Эрвин Чаргафф определил, что нуклеиновые кислоты содержат разные типы нуклеотидов в определенной закономерности. В дальнейшем это явление получило название «Правило Чаргаффа».

Классификация

Нуклеиновые кислоты бывают двух видов: ДНК и РНК. Их присутствие обнаруживается в клетках всех живых организмов. ДНК в основном содержится в ядре клетки. РНК находится в цитоплазме. В 1935 году, в ходе мягкого фрагментирования ДНК, были получены 4 ДНК-образующих нуклеотида. Эти компоненты представлены в состоянии кристаллов. В 1953 году Уотстон и Крик определили, что у ДНК существует двойная спираль.

Методы выделения

Разработаны различные способы получения соединений из естественных источников. Главными условиями этих методик являются результативное разделение нуклеиновых кислот и белков, наименьшая фрагментация веществ, полученных в ходе процесса. На сегодняшний день широко используется классический способ. Суть этого метода заключается в разрушении стенок биологического материала и дальнейшей их обработке анионным детергентом. В результате получается осадок из белка, а нуклеиновые кислоты остаются в растворе. Используется и другой метод. В этом случае нуклеиновые кислоты могут оседать в гелевом состоянии с помощью использования этанола и солевого раствора. При этом следует соблюдать определенную осторожность. В частности, добавлять этанол нужно с большой аккуратностью в солевой раствор для получения гелевого осадка. В какой концентрации выделилась нуклеиновая кислота, какие примеси в ней присутствуют, можно определить спектрофотометрическим методом. Нуклеиновые кислоты с легкостью подвергаются деградации с помощью нуклеазы, представляющей особый класс ферментов. При таком выделении необходимо, чтобы лабораторное оборудование прошло обязательную обработку ингибиторами. К ним относится, например, ингибитор DEPC, который применяется при выделении РНК.

Физические свойства

Нуклеиновые кислоты обладают хорошей растворимостью в воде, а в органических соединениях почти не растворяются. Кроме того, они особо восприимчивы к показателям температуры и уровня рН. Молекулы нуклеиновых кислот, обладающие высокой молекулярной массой, могут фрагментироваться нуклеазой под влиянием механических сил. К таковым относятся перемешивание раствора, его взбалтывание.

Нуклеиновые кислоты. Строение и функции

В клетках встречаются полимерные и мономерные формы рассматриваемых соединений. Полимерные формы называются полинуклеотидами. В таком виде цепочки нуклеотидов связываются остатком фосфорной кислоты. Из-за содержания двух видов гетероциклических молекул, называемых рибозой и дезоксорибозой, кислоты, соответственно, бывают рибонуклеиновые и дезоксирибонуклеиновые. С их помощью происходит хранение, передача и реализация наследственной информации. Из мономерных форм нуклеиновых кислот наиболее популярная аденозинтрифосфорная кислота. Она участвует в передаче сигналов и обеспечении запасов энергии в клетке.

ДНК

Дезоксирибонуклеиновая кислота является макромолекулой. С ее помощью происходит процесс передачи и реализации генетической информации. Эти сведения необходимы для программы развития и функционирования живого организма. У животных, растений, грибов ДНК входит в состав хромосом, находящихся в ядре клетки, а также находится в митохондриях и пластидах. У бактерий и архей молекула дезоксирибонуклеиновой кислоты цепляется за клеточную мембрану с внутренней стороны. В таких организмах присутствуют в основном кольцевые молекулы ДНК. Они получили название "плазмиды". По химическому строению дезоксирибонуклеиновая кислота представляет собой полимерную молекулу, состоящую из нуклеотидов. Эти компоненты, в свою очередь, имеют в своем составе азотистое основание, сахар и фосфатную группу. Именно за счет двух последних элементов образуется связь между нуклеотидами, создавая цепи. В основном макромолекула ДНК представлена в виде спирали из двух цепей.

РНК

Рибонуклеиновая кислота представляет собой длинную цепь, состоящую из нуклеотидов. В их составе присутствуют азотистое основание, сахар рибозы и фосфатная группа. Генетическая информация кодируется с помощью последовательности нуклеотидов. РНК используется для программирования синтеза белков. Рибонуклеиновая кислота создается в ходе транскрипции. Это процесс синтеза РНК на матрице ДНК. Он происходит при участии специальных ферментов. Называются они РНК-полимеразами. После этого матричные рибонуклеиновые кислоты участвуют в процессе трансляции. Так происходит осуществление синтеза белка на матрице РНК. Активное участие в этом процессе принимают рибосомы. Остальные РНК в завершение транскрипции проходят химические преобразования. В результате происходящих изменений образуются вторичная и третичная структуры рибонуклеиновой кислоты. Они функционируют в зависимости от типа РНК.

Министерство образования и науки РФ

Федеральное государственное автономное образовательное учреждение

Высшего образования

« КАЗАНСКИЙ НАЦИОНАЛЬНЫЙ ИССЛЕДОВАТЕЛЬСКИЙ ТЕХНОЛОГИЧЕСКИЙ УНИВЕРСИТЕТ»

ИНСТИТУТ ПИЩЕВОЙ ИНЖЕНЕРИИ

КАФЕДРА ПИЩЕВОЙ БИОТЕХНОЛОГИИ

РЕФЕРАТ НА ТЕМУ

НУКЛЕИНОВЫЕ КИСЛОТЫ. ДНК и РНК

Выполнила: Раденко В.

Группа 625 М-52

Нуклеиновые кислоты - природные высокомолекулярные органические соединения, обеспечивающие хранение и передачу наследственной (генетической) информации в живых организмах. В каждом живом организме присутствуют 2 типа нуклеиновых кислот: рибонуклеиновая кислота (РНК) и дезоксирибонуклеиновая кислота (ДНК). Молекулярная масса самой "маленькой" из известных нуклеиновых кислот - транспортной РНК (тРНК) составляет примерно 25 кД. ДНК - наиболее крупные полимерные молекулы; их молекулярная масса варьирует от 1 000 до 1 000 000 кД. ДНК и РНК состоят из мономерных единиц - нуклеотидов, поэтому нуклеиновые кислоты называют полинуклеотидами.

Строение нуклеотидов

Каждый нуклеотид содержит 3 химически различных компонента: гетероциклическое азотистое основание, моносахарид (пентозу) и остаток фосфорной кислоты. В зависимости от числа имеющихся в молекуле остатков фосфорной кислоты различают нуклеозидмонофосфаты (НМФ), нуклеозиддифосфаты (НДФ), нуклео-зидтрифосфаты (НТФ) (рис. 4-1). В состав нуклеиновых кислот входят азотистые основания двух типов: пуриновые - аденин (А),гуанин (G) и пиримидиновые - цитозин (С), тимин (Т) и урацил (U). Нумерация атомов в основаниях записывается внутри цикла (рис. 4-2). Пентозы в нуклеотидах представлены либо рибозой (в составе РНК), либо дезоксирибозой (в составе ДНК). Чтобы отличить номера атомов в пентозах от нумерации атомов в основаниях, запись производят с внешней стороны цикла и к цифре добавляют штрих (") - 1", 2", 3", 4" и 5" (рис. 4-3). Пентозу соединяет с основанием N-гликозидная связь, образованная С 1 -атомом пентозы (рибозы или дезоксирибозы) и N 1 -атомом пиримидина или N 9 -aтомом пурина (рис. 4-4). Нуклеотиды, в которых пентоза представлена рибозой, называют рибонуклеотидами, а нуклеиновые кислоты, построенные из рибонуклеотидов, - рибонуклеиновыми кислотами, или РНК. Нуклеиновые кислоты, в мономеры которых входит дезоксирибоза, называют дезоксири-бонуклеиновыми кислотами, или ДНК. Нуклеиновые кислоты по своему строению относят к



Рис. 4-1. Нуклеозидмоно-, ди- и трифосфаты аденозина. Нуклеотиды - фосфорные эфиры нуклеозидов. Остаток фосфорной кислоты присоединён к 5"-углеродному атому пентозы (5"-фосфоэфирная связь).

Рис. 4-2. Пуриновые и пиримидиновые основания.

Рис. 4-3. Пентозы. Присутствуют 2 вида - β-D-рибоза в составе нуклеотидов РНК и β-D-2-дезоксирибоза в составе нуклеотидов ДНК.

классу линейных полимеров. Остов нуклеиновой кислоты имеет одинаковое строение по всей длине молекулы и состоит из чередующихся групп - пентоза-фосфат-пентоза- (рис. 4-5). Вариабельными группами в полинуклеотидных цепях служат азотистые основания - пурины и пиримидины. В молекулы РНК входят аденин (А), урацил (U), гуанин (G) и цитозин (С), в ДНК - аденин (А), тимин (Т), гуанин (G) и цитозин (С). Уникальность структуры и функциональная индивидуальность молекул ДНК и РНК определяются их первичной структурой - последовательностью азотистых оснований в полинуклеотидной цепи.

Рис. 4-4. Пуриновый и пиримидиновый нуклеотиды.

Рис. 4-5. Фрагмент цепи ДНК.

Б. Структура дезоксирибонуклеиновой кислоты (ДНК)

Первичная структура ДНК - порядок чередования дезоксирибонуклеозидмонофосфатов (дНМФ) в полинукпеотидной цепи. Каждая фосфатная группа в полинукпеотидной цепи, за исключением фосфорного остатка на 5"-конце молекулы, участвует в образовании двух эфирных связей с участием 3"- и 5"-углеродных атомов двух соседних дезоксирибоз, поэтому связь между мономерами обозначают 3", 5"-фосфодиэфирной. Концевые нуклеотиды ДНК различают по структуре: на 5"-конце находится фосфатная группа, а на 3"-конце цепи - свободная ОН-группа. Эти концы называют 5"- и 3"-концами. Линейная последовательность дезоксирибонуклеотидов в полимерной цепи ДНК обычно сокращённо записывают с помощью однобуквенного кода, например -A-G-C-T-T-A-C-A- от 5"- к 3"-концу.

В каждом мономере нуклеиновой кислоты присутствует остаток фосфорной кислоты. При рН 7 фосфатная группа полностью ионизирована, поэтому in vivo нуклеиновые кислоты существуют в виде полианионов (имеют множественный отрицательный заряд). Остатки пентоз тоже проявляют гидрофильные свойства. Азотистые основания почти нерастворимы в воде, но некоторые атомы пуринового и пиримидинового циклов способны образовывать водородные связи.

Вторичная структура ДНК. В 1953 г. Дж. Уотсоном и Ф. Криком была предложена модель пространственной структуры ДНК. Согласно этой модели, молекула ДНК имеет форму спирали, образованную двумя полинуклеотидными цепями, закрученными относительно друг друга и вокруг общей оси. Двойная спираль правозакрученная, полинуклеотидньхе цепи в ней антипараллельны (рис. 4-6), т.е. если одна из них ориентирована в направлении 3"→5", то вторая - в направлении 5"→3". Поэтому на каждом из концов

Рис. 4-6. Двойная спираль ДНК.

Молекулы ДНК состоят из двух антипараллельных цепей с комплементарной последовательностью нукпеотидов. Цепи закручены относительно друг друга в правозакрученную спираль так, что на один виток приходится примерно 10 пар нуклеотидов.молекулы. Все основания цепей ДНК расположены внутри двойной спирали, а пентозофосфатный остов - снаружи. Полинуклеотидные цепи удерживаются относительно друг друга за счёт водородных связей между комплементарными пуриновыми и пиримидиновыми азотистыми основаниями А и Т (две связи) и между G и С (три связи) (рис. 4-7). При таком сочетании каждая пара содержит по три кольца, поэтому общий размер этих пар оснований одинаков по всей длине молекулы.

Рис. 4-7. Пурин-пиримидиновые пары оснований в ДНК.

Водородные связи при других сочетаниях оснований в паре возможны, но они значительно слабее. Последовательность нуклеотидов одной цепи полностью комплементарна последовательности нуклеотидов второй цепи. Поэтому, согласно правилу Чаргаффа (Эрвин Чаргафф в 1951 г. установил закономерности в соотношении пуриновых и пиримидиновых оснований в молекуле ДНК), число пуриновых оснований (А + G) равно числу пиримидиновых оснований (Т + С). Комплементарые основания уложены в стопку в сердцевине спирали. Между основаниями двухцепочечной молекулы в стопке возникают гидрофобные взаимодействия, стабилизирующие двойную спираль.

Такая структура исключает контакт азотистых остатков с водой, но стопка оснований не может быть абсолютно вертикальной. Пары оснований слегка смещены относительно друг друга. В образованной структуре различают две бороздки - большую, шириной 2,2 нм, и малую, шириной 1,2 нм. Азотистые основания в области большой и малой бороздок взаимодействуют со специфическими белками, участвующими в организации структуры хроматина.

Третичная структура ДНК (суперспирализация ДНК) Каждая молекула ДНК упакована в отдельную хромосому. В диплоидных клетках человека содержится 46 хромосом. Общая длина ДНК всех хромосом клетки составляет 1,74 м, но она упакована в ядре, диаметр которого в миллионы раз меньше. Чтобы расположить ДНК в ядре клетки, должна быть сформирована очень компактная структура. Компактизация и суперспирализация ДНК осуществляются с помощью разнообразных белков, взаимодействующих с определёнными последовательностями в структуре ДНК. Все связывающиеся с ДНК эукариотов белки можно разделить на 2 группы: гисгоновые и негистоновые белки. Комплекс белков с ядерной ДНК клеток называют хроматином.

Гистоны - белки с молекулярной массой 11-21 кД, содержащие много остатков аргинина и лизина. Благодаря положительному заряду гистоны образуют ионные связи с отрицательно заряженными фосфатными группами, расположенными на внешней стороне двойной спирали ДНК. Существует 5 типов гистонов. Четыре гистона Н2А, Н2В, НЗ и Н4 образуют октамерный белковый комплекс (Н2А, Н2В, НЗ, Н4) 2 , который называют "нуклеосомный кор" (от англ.nucleosome core ). Молекула ДНК "накручивается" на поверхность гистонового октамера, совершая 1,75 оборота (около 146 пар нуклеоти-дов). Такой комплекс гистоновых белков с ДНК служит основной структурной единицей хроматина, её называют "нуклеосома". ДНК, связывающую нуклеосомные частицы, называют линкерной ДНК. В среднем линкерная ДНК составляет 60 пар нуклеотидных остатков. Молекулы гистона H1 связываются с ДНК в межнуклеосомных участках (линкерных последовательностях) и защищают эти участки от действия нуклеаз (рис. 4-8).

Рис. 4-8. Структура нуклеосом.

Восемь молекул гистонов (Н2А, Н2В, НЗ, Н4) 2 составляют ядро нуклеосомы, вокруг которого ДНК образует примерно 1,75 витка. ДНК. Аминокислотные остатки лизина, аргинина и концевые аминогруппы гистонов могут модифицироваться: ацетилироваться, фосфорилироваться, метилироваться или взаимодействовать с белком убиквитином (неги-стоновый белок). Модификации бывают обратимыми и необратимыми, они изменяют заряд и конформацию гистонов, а это влияет на взаимодействие гистонов между собой и с ДНК. Активность ферментов, ответственных за модификации, регулируется и зависит от стадии клеточного цикла. Модификации делают возможными конформационные перестройки хроматина.

Негистоновые белки хроматина. В ядре эукариотической клетки присутствуют сотни самых разнообразных ДНК-связывающих негистоновых белков. Каждый белок комплементарен определённой последовательности нуклео-тидов ДНК (сайт ДНК). К этой группе относят семейство сайт-специфических белков типа "цинковые пальцы" (см. раздел 1). Каждый "цинковый палец" узнаёт определённый сайт, состоящий из 5 нуклеотидных пар. Другое семейство сайт-специфических белков - гомодимеры. Фрагмент такого белка, контактирующий с ДНК, имеет структуру "спираль-поворот-спираль" (см. раздел 1). К группе структурных и регуляторных белков, которые постоянно ассоциированы с хроматином, относят белки высокой подвижности (HMG-белки - от англ, high mobility gel proteins ). Они имеют молекулярную массу менее 30 кД и характеризуются высоким содержанием заряженных аминокислот. Благодаря небольшой молекулярной массе HMG-белки обладают высокой подвижностью при электрофорезе в полиакриламидном геле. К негистоновым белкам принадлежат также ферменты репликации, транскрипции и репарации. При участии структурных, регуляторных белков и ферментов, участвующих в синтезе ДНК и РНК, нить нуклео-сом преобразуется в высококонденсированный комплекс белков и ДНК. Образованная структура в 10 000 раз короче исходной молекулы ДНК.

Разработки