Окисление жирных кислот. Бета-окисление Окисление пальмитиновой кислоты биохимия

Биологическое окисление жирных кислот можно сопоставить со сгоранием углеводородов: как в одном, так и в другом случае наблюдается наибольший выход свободной энергии. При биологическом b-окислении углеводородной части жирных кислот образуются двууглеродные активированные компоненты, доокисляющиеся в ЦТК, и большое количество восстановительных эквивалентов, которые приводят к синтезу АТР в дыхательной цепи. Большинство аэробных клеток способно к полному окислению жирных кислот до углекислого газа и воды.

Источником жирных кислот служат экзогенные или эндогенные липиды. Последние чаще всего представлены триацилглицеридами, которые откладываются в клетках в качестве резервного источника энергии и углерода. Кроме этого, клетки используют и полярные липиды мембран, метаболическое обновление которых происходит постоянно. Липиды расщепляются с помощью специфических ферментов (липазы) до глицерола и свободных жирных кислот.

b-окисление жирных кислот . Этот основной процесс окисления жирных кислот осуществляется у эукариот в митохондриях. Переносу жирных кислот через мембраны митохондрий способствует карнитин (g-триметиламино-b-оксибутират), который связывает молекулу жирной кислоты особым образом, в результате чего положительный (на атоме азота) и отрицательный (на атоме кислорода карбоксильной группы) заряды оказываются сближенными и нейтрализуют друг друга.

После транспорта в матрикс митохондрий жирные кислоты подвергаются активации с помощью СоА в АТР-зависимой реакции, которую катализирует ацетат-тиокиназа (рис. 9.1). Затем ацил-СоА-производное окисляется с участием ацил-дегидрогеназы. В клетке существует несколько разных ацилдегидрогеназ, специфичных к СоА-производным жирных кислот с разной длиной углеводородной цепи. Все эти ферменты используют FAD в качестве простетической группы. Образующийся в реакции FADH 2 в составе ацилдегидрогеназы окисляется другим флавопротеидом, переносящим электроны к дыхательной цепи в составе митохондриальной мембраны.

Продукт окисления - еноил-СоА гидратируется под действием еноилгидратазы с образованием b-гидроксиацил-СоА (рис. 9.1). Существуют еноил-СоА-гидратазы, специфичные к цис- и транс-формам еноил-СоА-производных жирных кислот. При этом транс-еноил-СоА гидратируется стереоспецифически в L-b-гидроксиацил-СоА, а цис-изомеры - в D-стереоизомеры -b-гидроксиацил-СоА-эфиров.

Последний этап реакций b-окисления жирных кислот представляет собой дегидрирование L-b-гидроксиацил-СоА (рис. 9.1). Окислению подвергается b-углеродный атом молекулы, поэтому и весь процесс носит название b-окисления. Катализирует реакцию b-гидроксиацил-СоА-дегидрогеназа, специфичная только к L-формам b-гидроксиацил-СоА. Этот фермент использует в качестве кофермента NAD. Дегидрирование D-изомеров b-гидроксиацилСоА осуществляется после дополнительной стадии изомеризации их в L-b-гидроксиацил-СоА (фермент b-гид-роксиацил-СоА-эпимераза). Продукт данного этапа реакций представляет собой b-кетоацил-СоА, легко расщепляющийся тиолазой на 2 производных: ацил-СоА, который короче исходного активированного субстрата на 2 углеродных атома, и ацетил-СоА-двууглеродный компонент, отщепленный от жирнокислотной цепи (рис. 9.1). Ацил-СоА-производное подвергается следующему циклу реакций b-окисления, а ацетил-СоА может вступать в цикл трикарбоновых кислот для дальнейшего окисления.

Таким образом, каждый цикл b-окисления жирных кислот сопровождается отщеплением от субстрата двууглеродного фрагмента (ацетил-СоА) и двух пар атомов водорода, восстанавливающих 1 молекулу NAD + и одну молекулу FAD. Процесс продолжается до полного расщепления жирнокислотной цепи. Если жирная кислота состояла из нечетного числа атомов углерода, то b-окисление завершается образованием пропионил-СоА, который в ходе нескольких реакций превращается в сукцинил-СоА и в таком виде может вступать в ЦТК.

Большинство жирных кислот, входящих в состав клеток животных, растений и микроорганизмов, содержит неразветвленные углеводородные цепи. В то же время в липидах некоторых микроорганизмов и в восках растений присутствуют жирные кислоты, чьи углеводородные радикалы имеют точки ветвления (обычно в виде метильных групп). Если ветвлений немного, и все они приходятся на четные положения (у углеродных атомов 2, 4 и т. д.), то процесс b-окисления происходит по обычной схеме с образованием ацетил- и пропионил-СоА. Если же метильные группы расположены у нечетных атомов углерода, процесс b-окисления блокируется на стадии гидратирования. Это следует учитывать при производстве синтетических детергентов: чтобы обеспечить их быструю и полную биодеградацию в окружающей среде, надо к массовому потреблению допускать лишь варианты с неразветвленными углеводородными цепями.

Окисление ненасыщенных жирных кислот . Этот процесс осуществляется с соблюдением всех закономерностей b-окисления. Однако большинство природных ненасыщенных жирных кислот имеет двойные связи в таких местах углеводородной цепи, что последовательное удаление двууглеродных фрагментов с карбоксильного конца дает ацил-СоА-производное, у которого двойная связь находится в положении 3-4. К тому же двойные связи природных жирных кислот имеют цис-конфигурацию. Чтобы смогла осуществиться стадия дегидрирования с участием b-гидроксиацил-СоА-дегидрогеназы, специфичной к L-формам b-гидроксиацил-СоА, необходима дополнительная стадия ферментативной изомеризации, в ходе которой двойная связь в молекуле СоА-производного жирной кислоты перемещается из положения 3-4 в положение 2-3 и изменяется конфигурация двойной связи из цис- в транс-. Такой метаболит служит субстратом еноил-гидратазы, превращающей транс-еноил-СоА в L-b-гидроксиацил-СоА.

В тех случаях, когда перенос и изомеризация двойной связи оказываются невозможными, такая связь восстанавливается при участии NADPH. Последующая деградация жирной кислоты происходит по обычному механизму b-окисления.

Второстепенные пути окисления жирных кислот . b-Окисление представляет собой основной, но не единственный путь катаболизма жирных кислот. Так, в клетках растений обнаружен процесс a-окисления жирных кислот, содержащих в составе 15- 18 атомов углерода. Этот путь включает первичную атаку жирной кислоты пероксидазой в присутствии перекиси водорода, в результате чего карбоксильный углерод отщепляется в виде СО 2 , а атом углерода в a-положении окисляется до альдегидной группы. Затем альдегид окисляется при участии дегидрогеназы в высшую жирную кислоту, и процесс повторяется снова (рис. 9.2). Однако этот путь не может обеспечить полного окисления. Он используется лишь для укорочения цепей жирных кислот, а также в качестве обходного пути, когда b-окисление оказывается заблокированным из-за присутствия боковых метильных групп. Процесс не требует участия СоА и не сопровождается образованием АТР.

Некоторые жирные кислоты могут также подвергаться окислению по w-углеродному атому (w-окисление). В этом случае СН 3 - группа подвергается гидроксилированию под действием монооксигеназы, в ходе которого возникает w-оксикислота, которая затем окисляется до дикарбоновой кислоты. Дикарбоновая кислота может укорачиваться с любого конца посредством реакций b-окисления.

Подобным образом в клетках микроорганизмов и некоторых тканей животных происходит расщепление насыщенных углеводородов. На первой стадии с участием молекулярного кислорода происходит гидроксилирование молекулы с образованием спирта, который последовательно окисляется в альдегид и карбоновую кислоту, активируется присоединением СоА и вступает в путь b-окисления.

Молекула жирной кислоты расщепляется в митохондрии путем постепенного отщепления двууглеродных фрагментов в виде ацетилкоэнзима А (ацетил-КоА).
Обратите внимание, что первый этап бета-окисления представляет собой взаимодействие молекулы жирной кислоты с коэнзимом А (КоА) с образованием ацил-КоА жирной кислоты. В уравнениях 2, 3 и 4 бета-углерод (второй углерод справа) ацил-КоА жирной кислоты взаимодействует с молекулой кислорода, вследствие этого бета-углерод окисляется.

В правой части уравнения 5 двууглеродная часть молекулы отщепляется, образуя ацетил-КоА, выделяющийся во внеклеточную жидкость. В то же время другая молекула КоА взаимодействует с концом оставшейся части молекулы жирной кислоты, вновь формируя ацил-КоА жирной кислоты. Сама молекула жирной кислоты в это время становится короче на 2 атома углерода, т.к. первый ацетил-КоА уже отделился от ее терминали.

Затем эта укоротившаяся молекула ацил-КоА жирной кислоты выделяет еще 1 молекулу ацетил-КоА, что приводит к укорочению исходной молекулы жирной кислоты еще на 2 атома углерода. Кроме высвобождения молекул ацетил-КоА из молекул жирных кислот в ходе этого процесса выделяются 4 атома углерода.

Окисление ацетил-КоА . Образующиеся в митохондриях в ходе процесса бета-окисления жирных кислот молекулы ацетил-КоА немедленно поступают в цикл лимонной кислоты и, взаимодействуя прежде всего с щавелево-уксусной кислотой, образуют лимонную кислоту, которая затем последовательно окисляется посредством хемоосмотическои. системы окисления митохондрий. Чистый выход реакции цикла лимонной кислоты на 1 молекулу аце-тил-КоА составляет:
СН3СОСоА + Щавелево-уксусная кислота + 2Н20 + АДФ=> 2С02 + 8Н + НСоА + АТФ + Щавелево-уксусная кислота.

Таким образом, после начального расщепления жирной кислоты с образованием ацетил-КоА окончательное их расщепление осуществляется так же, как расщепление ацетил-КоА, образовавшегося из пировиноградной кислоты в процессе метаболизма глюкозы. Образующиеся при этом атомы водорода окисляются той же системой окисления митохондрий, которая используется в процессе окисления углеводов, с образованием большого количества аденозинтрифосфата.

При окислении жирных кислот образуется огромное количество АТФ. На рисунке показано, что 4 атома водорода, высвобождающиеся при отделении ацетил-КоА от цепочки жирной кислоты, выделяются в виде ФАДН2, НАД-Н и Н+, поэтому при расщеплении 1 молекулы стеариновой кислоты образуется, кроме 9 молекул ацетил-КоА, еще 32 атома водорода. В процессе расщепления каждой из 9 молекул ацетил-КоА в цикле лимонной кислоты выделяются еще 8 атомов водорода, что в итоге дает 72 атома водорода.

Суммарно при расщеплении 1 молекулы стеариновой кислоты выделяются 104 атома водорода. Из этого общего количества 34 атома выделяются, будучи связанными с флавопротеинами, а остальные 70 высвобождаются в форме, связанной с никотинамидадениндинуклеотидом, т.е. в виде НАД-Н+ и Н+.

Окисление водорода , связанного с этими двумя типами веществ, осуществляется в митохондриях, но они вступают в процесс окисления в разных точках, поэтому окисление каждого из 34 атомов водорода, связанных с флавопротеинами, приводит к выделению 1 молекулы АТФ. Еще 1,5 молекулы АТФ синтезируется из каждых 70 НАД+ и Н+. Это дает к 34 еще 105 молекул АТФ (т.е. всего 139) при окислении водорода, отщепляющегося при окислении каждой молекулы стеариновой кислоты.

Дополнительно 9 молекул АТФ образуются в цикле лимонной кислоты (помимо АТФ, получаемой при окислении водорода), по 1 на каждую из 9 молекул метаболизирующегося ацетил-КоА. Итак, при полном окислении 1 молекулы стеариновой кислоты образуются в сумме 148 молекул АТФ. С учетом того, что при взаимодействии стеариновой кислоты с КоА на начальной стадии метаболизма этой жирной кислоты расходуются 2 молекулы АТФ, чистый выход АТФ составляет 146 молекул.

Вернуться в оглавление раздела " "

Процесс окисления жирных кислот складывается из следующих основных этапов.

Активация жирных кислот. Свободная жирная кислота независимо от длины углеводородной цепи является метаболически инертной и не может подвергаться никаким биохимическим превращениям, в том числе окислению, пока не будет активирована. Активация жирной кислоты протекает на наружной поверхности мембраны митохондрий при участии АТФ, коэнзима A (HS-KoA) и ионов Mg 2+ . Реакция катализируется ферментом ацил-КоА-синтетазой:

В результате реакции образуется ацил-КоА, являющийся активной формой жирной кислоты.

Первая стадия дегидрирования. Ацил-КоА в митохондриях прежде всего подвергается ферментативному дегидрированию, при этом ацил-КоА теряет 2 атома водорода в α- и β-положениях, превращаясь в КоА-эфир ненасыщенной кислоты.

Стадия гидратации. Ненасыщенный ацил-КоА (еноил-КоА) при участии фермента еноил-КоА-гидратазы присоединяет молекулу воды. В результате образуется β-оксиацил-КоА (или 3-гидроксиацил-КоА):

Вторая стадия дегидрирования. Образовавшийся β-оксиацил-КоА (3-гидроксиацил-КоА) затем дегидрируется. Эту реакциюкатализируют НАД + -зависимые дегидрогеназы:

Тиолазная реакция. представляет собой расщепление 3-оксоацил-КоА с помощью тиоловой группы второй молекулы КоА. В результате образуется укороченный на два углеродных атома ацил-КоА и двууглеродный фрагмент в виде ацетил-КоА. Данная реакция катализируется ацетил-КоА-ацилтрансферазой (β-ке-тотиолазой):

Образовавшийся ацетил-КоА подвергается окислению в цикле трикар-боновых кислот, а ацил-КоА, укоротившийся на два углеродных атома, снова многократно проходит весь путь β-окисления вплоть до образования бутирил-КоА (4-углеродное соединение), который в свою очередь окисляется до 2 молекул ацетил-КоА.

Баланс энергии. При каждом цикле β-окисления образуются одна молекула ФАДН 2 и одна молекула НАДН. Последние в процессеокисления в дыхательной цепи и сопряженного с ним фосфорилирования дают: ФАДН 2 – 2 молекулы АТФ и НАДН – 3 молекулы АТФ, т.е. в сумме за один цикл образуется 5 молекул АТФ. При окислении пальмитиновой кислоты образуется 5 х 7 = 35 молекул АТФ. В процессе β-окисления пальмитиновой кислоты образуется 8 молекул ацетил-КоА, каждая из которых, «сгорая» в цикле трикарбоновых кислот, дает 12 молекул АТФ, а 8 молекул ацетил-КоА дадут 12 х 8 = 96 молекул АТФ.

Таким образом, всего при полном β-окислении пальмитиновой кислоты образуется 35 + 96 = 131 молекула АТФ. С учетом одноймолекулы АТФ, потраченной в самом начале на образование активной формы пальмитиновой кислоты (пальмитоил-КоА), общий энергетический выход при полном окислении одной молекулы пальмитиновой кислоты в условиях животного организма составит 131 – 1 = 130 молекул АТФ.

100 р бонус за первый заказ

Выберите тип работы Дипломная работа Курсовая работа Реферат Магистерская диссертация Отчёт по практике Статья Доклад Рецензия Контрольная работа Монография Решение задач Бизнес-план Ответы на вопросы Творческая работа Эссе Чертёж Сочинения Перевод Презентации Набор текста Другое Повышение уникальности текста Кандидатская диссертация Лабораторная работа Помощь on-line

Узнать цену

Жирными кислотами называют как предельные, так и непредельные высшие карбоновые кислоты, углеводородняая цепь которых содержит более 12 углеродных атомов. В организме окисление жирных кислот – чрезвычайно важный процесс, и оно может быть направлено на α, β и ω-углеродные атомы молекул карбоновых кислот. Среди этих процессов наиболее часто происходит β-окисление. Установлено, что окисление жирных кислот протекает в печени, почках, скелетных и сердечной мышцах, в жировой ткани. В мозговой ткани скорость окисления жирных кислот весьма незначительна; основным источником энергии в мозговой ткани служит глюкоза.

В 1904 г. Ф. Кнооп (F. Knoop) выдвинул гипотезу β-окисления жирных кислот на основании опытов по скармливанию собакам различных жирных кислот, в которых один атом водорода в концевой метильной группе (ω-углеродного атома) был замещен радикалом (С6Н5–).

Жирные кислоты, входящие в состав естественных жиров животных и растений, имеют четное число углеродных атомов. Любая такая кислота, от которой отщепляется по паре углеродных атомов, в конце концов проходит через стадию масляной кислоты. После очередного β-окисления масляная кислота становится ацетоуксусной. Последняя затем гидролизуется до двух молекул уксусной кислоты. Теория β-окисления жирных кислот, предложенная Ф. Кноопом, в значительной мере послужила основой современных представлений о механизме окисления жирных кислот.

β-Окисление жирных кислот . Образующийся при гидролизе жиров карбоновые кислоты подвергаются β-окислению в митохондриях, куда они поступают в виде соответствующих ацилкоферментов А. β-Окисление – это 4 последовательных ОВР.

І реакция. Дегидрирование

// дегидрогеназа /

С15Н31 – СН2 – СН2 – С + ФАД С = С + ФАД(2Н)

ЅКоА Н СОЅКоА

Стерилкоэнзим А трансизомер стерилкоэнзима А

ІІ реакция Гидратация

/ гидратаза //

С = С + Н2О С15Н31 – СН – СН2 – С

Н СОЅКоА ОН ЅКоА

Трансизомер стерилкоэнзима А L-изомер β-окисикарбоноврй кислоты

ІІІ реакция Дегидрирование

// дегидрогеназа //

С15Н31 – СН – СН2 – С + НАД+ С15Н31 – С – СН2 – С + НАДН + Н+

ОН ЅКоА О ЅКоА

β-оксокислота

ІV реакция. Расщепление

// тиолаза // //

С15Н31 – С – СН2 – С + НЅКоА С15Н31 – С СН3 – С

О ЅКоА ЅКоА ЅКоА

Пальмитокоэнзим А Ацетилкоэнзим А

На новое в цикл Кребса для

β-окисление окончательного

окисления

до СО2 и Н2О

Четыре рассмотренные реакции процесса β-окисления представляют собой цикл, в ходе которого происходит укорочение углеродной цепи на два углеродных атома. Пальмитокоэнзим А вновь подвергается β-окислению, повторяя данный цикл. При β-окислении одной молекулы стеариновой кислоты образуется 40 молекул АТФ, а включая и цикл Кребса, котором окисляется образующийся ацетилкоэнзим А – 146 молекул АТФ. Это говорит о важности процессов окисления жирных кислот с точки зрения энергетики организма.

α-Окисление жирных кислот. В растениях под действием ферментов происходит окисление жирных кислот по α-углеродному атому – α-окисление. Это цикл, состоящий из двух реакций.

І реакция заключается в окислении жирной кислоты пероксидом водорода с участием соответствующей пероксидазы в соответствующий альдегид и СО2.

Пероксидаза //

R – СН2 – СООН + 2 Н2О2 R – С + СО2

В результате этой реакции углеродная цепь укорачивается на один углеродный атом.

ІІ реакция состоит в гидратации и окислении образующегося альдегида в соответствующую карбоновую кислоту под действием альдегидодегидрогеназы с окисленной формой НАД+:

// альдегидо- //

R – С + Н2О + НАД+ дегидрогеназа R – С + НАД(Н) + Н+

Цикл α-окисления характерен только для растений.

ω-Окисление жирных кислот. В печени животных и у некоторых микроорганизмов существует ферментная система, обеспечивающая ω-окисление, т.е. окисление по концевой СН3-группе. Сначала под действием монооксигеназы происходит гидроксилирование с образованием ω-оксикислоты:

ω монооксигеназа

СН3 – R – СООН + «О» НОСН2 – R – СООН

НОСН2 – R – СООН + Н2О + 2НАД+ дегидрогеназа НООС– R – СООН + 2 НАД (Н) + 2Н+

ω-дикарбоновая кислота

Полученная ω-дикарбоновая кислота укорачивается с любого конца посредством реакции β-окисления.

Если карбоновая кислота имеет разветвления, то её биологическое окисление прекращается, дойдя до места разветвления цепи.

Окисление жирных кислот протекает в печени, почках, скелетных и сердечных мышцах, в жировой ткани.

Ф.Кнооп высказал предположение, что окисление молекулы жирной кислоты в тканях организма происходит в b-окислении. В результате от молекулы жирной кислоты отщепляются двууглеродные фрагменты со стороны карбоксильной группы. Процесс b-окисления жирных кислот складывается из следующих этапов:

Активация жирных кислот. Подобно первой стадии гликолиза сахаров перед b-окислением жирные кислоты подвергаются активации. Эта реакция протекает на наружной поверхности мембраны митохондрий при участии АТФ, коэнзима А (НS-КоА) и ионов Mg 2+ . Реакция катализируется ацил-КоА-синтетазой:

В результате реакции образуется ацил-КоА, являющийся активной формой жирной кислоты.

Транспорт жирных кислот внутрь митохондрий. Коэнзимная форма жирной кислоты, в равной мере как и свободные жирные кислоты, не обладает способностью проникать внутрь митохондрий, где, собственно, и протекает их окисление, переносчиком активированных жирных кислот через внутреннюю митохондриальную мембрану служит карнитин (g-триметиламино-b-оксибути-рат):

После прохождения ацилкарнитина через мембрану митохондрий происходит обратная реакция – расщепления ацилкарнитина при участии НS-КоА и митохондриальной карнитин-ацилтрансферазы:

Ацил-КоА в митохондрии подвергается процессу b-окисления.

Этот путь окисления связан с присоединением атома кислорода к углеродному атому жирной кислоты, находящемуся в b-положении:

При b-окислении происходит последовательное отщепление от карбоксильного конца углеродной цепи жирной кислоты двууглеродных фрагментов в форме ацетила-КоА и соответствующее укорачивание цепи жирной кислоты:

В матриксе митохондрии ацил-КоА распадается в результате повторяющейся последовательности четырех реакций (рис.8).

1) окисление с участием ацил-КоА-дегидрогеназы (ФАД-зависимой дегидрогеназы);

2) гидратация, катализируемой еноил-КоА-гидратазой;

3) второго окисления под действием 3-гидроксиацетил-КоА-дегидрогеназы (НАД-зависимой дегидрогеназы);

4) тиолиза с участием ацетил-КоА-ацилтрансферазы.

Совокупность этих четырех последовательностей реакций составляет один оборот b-окисления жирной кислоты (см. рис. 8).

Образовавшийся ацетил-КоА подвергается окислению в цикле Кребса, а ацетил-КоА, укоротившийся на два углеродных атома, снова многократно проходит весь путь b-окисления вплоть до образования бутирил-КоА (4-углеродное соединение), на последнем этапе b-окисления распадается на две молекулы ацетил-КоА.

При окислении жирной кислоты, содержащей n углеродных атомов, происходит n/2-1 цикл b-окисления (т.е. на один цикл меньше, чем n/2, так как при окислении бутирил-КоА сразу происходит образование двух молекул ацетил-КоА) и всего получится n/2 молекул ацетил-КоА.


Например при окислении пальмитиновой кислоты (С 16) повторяется 16/2-1=7 циклов b-окисления и образуется 16/2=8 молекул ацетил-КоА.

Рисунок 8 – Схема b-окисления жирной кислоты

Баланс энергии. При каждом цикле b-окисления образуется одна молекула ФАДН 2 (см. рис. 8; реакция 1) и одна молекула НАДН+Н + (реакция 3). Последняя в процессе окисления дыхательной цепи и сопряженного с ним фосфорилирования дают: ФАДН 2 – 2 молекулы АТФ и НАДН+Н + – 3 молекулы АТФ, т.е. в сумме за один цикл образуется 5 молекул АТФ. При окислении пальмитиновой кислоты образуется 5*7=35 молекул АТФ. В процессе b-окисления пальмитиновой кислоты образуется 8 молекул ацетил-КоА, каждая из которых, «сгорая» в цикле Кребса, дает 12 молекул АТФ, а 8 молекул дадут 12*8=96 молекул АТФ.

Таким образом, всего при полном b-окислении пальмитиновой кислоты образуется 35+96=131 молекула АТФ. С учетом одной молекулы АТФ, потраченной в самом начале на стадии активации жирной кислоты, общий энергетический выход при полном окислении одной молекулы пальмитиновой кислоты составит 131-1=130 молекул АТФ.

Однако, образовавшийся в результате b-окисления жирных кислот ацетил-КоА, может не только окисляться до СО 2 , Н 2 О, АТФ, вступая в цикл Кребса, но использоваться на синтез холестерина, а также углеводов в глиоксилатном цикле.

Глиоксилатный путь специфичен только для растений и бактерий, у животных организмов он отсутствует. Данный процесс синтеза углеводов из жиров подробно описан в методическом указании «Взаимосвязь процессов обмена углеводов, жиров и белков» (см. п. 2.1.1, с. 26).

Разработки