Следующие функции по отношению. Функции экономических отношений. Функции социально-экономических отношений

Общение всегда рассматривалось как полифункциональный процесс. Функции общения психологи определяют по разным критериям: эмоциональная, информационная, социализирующая, связующая, трансляционная, направленная на самопознание (А. В. Мудрик), установление общности, самоопределение (А. Б. Добрович), самовыражение (А. А. Брудный), сплочение и др. Чаще всего в психологии функции общения рассматривают в соответствии с моделью отношений "человек-деятельность-общество".

Можно выделить пять основных его функций: прагматическая, формирующая, подтверждающая, организация и поддержание межличностных отношений, внутриличностная (рис. 7).

В прагматической функции общение выступает как важнейшее условие объединения людей в процессе любой совместной деятельности. О том, какие разрушительные последствия для деятельности людей имеет невыполнение этого условия, повествуется в знаменитом библейском сюжете о строительстве Вавилонской башни.

Рис. 7.

Большая роль принадлежит формирующей функции общения. Общение ребенка и взрослого это не просто процесс передачи первому суммы умений, навыков и знаний, которые он механически усваивает, а сложный процесс взаимного влияния, обогащения и изменения. Жизненно необходимая роль общения ярко проявляется в следующем примере. В 30-х гг. XX в. в США был проведен эксперимент в двух клиниках, в которых дети лечились от серьезных, плохо излечимых заболеваний. Условия в обеих клиниках были одинаковые, но с некоторым различием: в одной больнице родственников к малышам не пускали, опасаясь инфекции, а в другой – в определенные часы родители могли пообщаться и поиграть с ребенком в специально отведенной комнате. Через несколько месяцев сравнили показатели эффективности лечения. В первом отделении коэффициент смертности приблизился к одной трети, несмотря на усилия врачей. Во втором отделении, где малышей лечили теми же средствами и методами, не умер ни один ребенок.

Функция подтверждения в процессе общения дает возможность познать, утвердить себя. Желая утвердиться в своем существовании и своей ценности, человек ищет точку опоры в другом человеке. Повседневный опыт человеческого общения изобилует процедурами, организованными по принципу подтверждения: ритуалы знакомства, приветствия, именования, оказание различных знаков внимания. Известный английский психиатр Р. Д. Лейнг видел в не подтверждении универсальный источник многих психических заболеваний, прежде всего – шизофрении.

Межличностная для любого человека связано с оцениванием людей и установлением определенных эмоциональных отношений – либо позитивных, либо негативных. Поэтому эмоциональное отношение к другому человеку может быть выражено в терминах "симпатии – антипатии", что накладывает свой отпечаток не только на личностное, но и на деловое общение.

Внутриличностная функция рассматривается как универсальный способ мышления человека. Л. С. Выготский отмечал в связи с этим, что "человек и наедине с самим собой сохраняет функцию общения".

Итак, ведущее значение общения в жизнедеятельности человека состоит в том, что оно является средством организации совместной деятельности людей и способом удовлетворения потребности человека в другом человеке, живом их контакте.

Общение как социально-психологический феномен – это контакт между людьми, который осуществляется посредством языка и речи, имеет разные формы проявления. Язык – система словесных знаков, средство, с помощью которого осуществляется общение между людьми. Использование языка с целью общения людей называют речью. В зависимости от особенностей общения выделяют различные его виды (рис. 8).

По контакту с собеседником общение может быть непосредственным и опосредованным.

Непосредственное общение (прямое) – это естественное общение, когда субъекты взаимодействия находятся рядом и общаются посредством речи, мимики и жестов.

Рис. 8.

Данный вид общения является наиболее полноценным, потому что индивиды в процессе его получают максимальную информацию друг о друге.

Опосредованное (косвенное) общение осуществляется в ситуациях, когда индивиды отдалены друг от друга временем или расстоянием. Например: разговор по телефону, переписка. Опосредованное общение это неполный психологический контакт, когда обратная связь затруднена.

Общение может быть межличностным или массовым. Массовое общение представляет собой множественные контакты незнакомых людей, а также коммуникацию, опосредованную различными видами массовой информации. Оно может быть прямым и опосредованным. Прямое массовое общение наблюдается на митингах, собраниях, демонстрациях, во всех больших социальных группах: толпе, публике, аудитории. Опосредованное массовое общение имеет односторонний характер и связано с массовой культурой и средствами массовой коммуникации.

По критерию равноправия партнеров в межличностном общении (рис. 9) выделяют два типа: диалогическое и монологическое.

Диалогическое общение – равноправное субъект-субъектное взаимодействие, имеющее целью взаимное познание, стремление к реализации целей каждого партнера.

Монологическое общение реализуется при неравноправных позициях партнеров и представляет собой субъект-объектные отношения. Оно может быть императивным и манипулятивным. Императивное общение – авторитарная, директивная форма взаимодействия с партнером с целью достижения контроля над его поведением, установками, мыслями и принуждения к определенным действиям или решениям. Причем цель эта не завуалирована. Манипулятивное общение – форма межличностного общения, при которой воздействие на партнера по общению осуществляется скрытно для достижения своих намерений.

Рис. 9.

Выделяют два типа коммуникаций – ролевую и личностную. В ролевом общении люди действуют, исходя из занимаемого статуса. Например, ролевым будет общение учителя с учениками, начальника цеха с рабочими и т.д. Ролевое общение регламентировано принятыми в обществе правилами и спецификой обращения. Личностное общение зависит от индивидуальных особенностей людей и взаимоотношений между ними.

Общение может быть кратковременным или длительным в зависимости от целей, содержания деятельности, индивидуальных особенностей собеседников, их симпатий, антипатий и т.д.

Обмен информацией может происходить посредством вербального и невербального взаимодействия. Вербальное общение происходит посредством речи, невербальное – с помощью паралингвистических средств передачи информации (громкость речи, тембр голоса, жесты, мимика, позы).

Общение осуществляется на разных уровнях. Уровни общения определяются общей культурой взаимодействующих объектов, их индивидуальными и личностными характеристиками, особенностями ситуации, социальным контролем, ценностными ориентациями общающихся, их отношением друг к другу (рис. 10).

Рис. 10.

Самый примитивный уровень общения – фатический (от лат. fatuus – глупый). Он предполагает простой обмен репликами для поддержания разговора, не имеет глубокого смысла. Такое общение необходимо в стандартизированных условиях либо определяется этикетными нормами.

Информационный уровень общения предполагает обмен интересной для собеседников новой информацией, являющейся источником эмоциональной, мыслительной, поведенческой активности человека.

Личностный уровень общения характеризует такое взаимодействие, при котором субъекты способны к глубокому самораскрытию и постижению сущности другого человека, самого себя и окружающего мира. Он построен на позитивном отношении к себе, другим людям и окружающему миру в целом. Это высший духовный уровень общения.

Отображение f множества X в множество Y считается заданным, если каждому элементу x из X сопоставлен ровно один элемент y из Y, обозначаемый f(x).

Множество X называется областью определения отображения f, а множество Y – областью значений . Множество упорядоченных пар

Г f = {(x, y) | x∈X, y∈Y, y = f(x)}

называют графиком отображения f. Непосредственно из определения вытекает, что график отображения f является подмножеством декартова произведения X×Y:

Строго говоря, отображение – это тройка множеств (X, Y, G) такая, что G⊂ X×Y, и каждый элемент x из X является первым элементом ровно одной пары (x, y) из G. Обозначая второй элемент такой пары через f(x), получаем отображение f множества X в множество Y. При этом G=Г f . Если y=f(x), мы будем писать f:x→y и говорить, что элемент x переходит или отображается в элемент y; элемент f(x) называется образом элемента x относительно отображения f. Для обозначения отображений мы будем использовать записи вида f: X→Y.

Пусть f: X→Y – отображение множества X в множество Y, а A и B – подмножества множеств X и Y соответственно. Множество f(A)={y| y=f(x) для некоторого x∈A} называется образом множества A. Множество f − 1 (B)={x| f(x) ∈B}

называется прообразом множества B. Отображение f: A→Y, при котором x→f(x) для всех x∈A, называется сужением отображения f на множество A; сужение будет обозначаться через f| A .

Пусть имеются отображения f: X→Y и g: Y→Z. Отображение X→Z, при котором x переходит в g(f(x)), называется композицией отображений f и g и обозначается через fg .

Отображение множества X в X, при котором каждый элемент переходит сам в себя, x→x , называется тождественным и обозначается через id X .

Для произвольного отображения f: X→Y имеем id X ⋅f = f⋅id Y .

Отображение f: X→Y называется инъективным , если для любых элементов из и следует, что . Отображение f: X→Y называется сюръективным , если всякий элемент y из Y является образом некоторого элемента x из X, то есть f(х)=у. Отображение f: X→Y называется биективным , если оно одновременно инъективно и сюръективно. Биективное отображение f: X→Y обратимо. Это означает, что существует отображение g: Y→X, называемое обратным к отображению f, такое, что g(f(x))=x и f(g(y))=y для любых x∈X, y∈Y. Отображение, обратное к отображению f, обозначается через f − 1 .

Обратимое отображение f: X→Y устанавливает взаимно однозначное соответствие между элементами множеств X и Y. Инъективное отображение f: X→Y устанавливает взаимно однозначное соответствие между множеством X и множеством f(X).


Примеры . 1) Функция f:R→R >0, f (x)=e x , устанавливает взаимно однозначное соответствие множества всех действительных чисел Rс множеством положительных действительных чисел R >0 . Обратным к отображению f является отображение g:R >0 →R, g(x)=ln x.

2) Отображение f:R→R ≥ 0 , f(x)=x 2 , множества всех действительных Rна множество неотрицательных чисел R ≥ 0 сюръективно, но не инъективно, и поэтому не является биективным.

Свойства функции:

1. Композиция двух функций есть функция, т.е. если , то .

2. Композиция двух биективных функций есть биективная функция, если , то .

3. Отображение имеет обратное отображение тогда и

тогда и только тогда, когда f –биекция, т.е. если , то .

Определение. n – местным отношением, или n – местным предикатом Р, на множествах А 1 ;А 2 ;…;А n называется любое подмножество декартова произведения .

Обозначение n - местного отношения P(x 1 ;x 2 ;…;x n). При n=1 отношение Р называется унарным и является подмножеством множества А 1 . Бинарным (двуместным при n=2) отношением называется множество упорядоченных пар.

Определение. Для любого множества А отношение называется тождественным отношением, или диагональю, а - полным отношением, или полным квадратом.

Пусть Р – некоторое бинарное отношение. Тогда областью определения бинарного отношения Р называется множество для некоторого y}, а областью значений – множество для некоторого x}. Обратным к Р отношением называется множество .

Отношение Р называется рефлексивным, если оно содержит все пары вида (x,x) для любого x из X. Отношение Р называется антирефлексивным , если оно не содержит ни одной пары вида (x,x). Например, отношение x≤y рефлексивно, а отношение x

Отношение Р называется симметричным , если вместе с каждой парой (x,y) оно содержит также и пару (y,x). Симметричность отношения Р означает, что Р=Р –1 .

Отношение Р называется антисимметричным , если (x;y)и (y;x), то x=y.

Отношение R называется транзитивным, если вместе с любыми парами (x,y) и (y,z) оно содержит также и пару (x,z), то есть из xРy и yРz следует xРz.

Свойства бинарных отношений:

Пример. Пусть А={x/x – арабская цифра}; Р={(x;y)/x,yA,x-y=5}. Найти D;R;P -1 .

Решение. Отношение Р можно записать в виде Р={(5;0);(6;1);(7;2);(8;3);(9;4)}, тогда для него имеем D={5;6;7;8;9}; Е={0;1;2;3;4}; P -1 ={(0;5);(1;6);(2;7);(3;8);(4;9)}.

Рассмотрим два конечных множества и бинарное отношение . Введем матрицу бинарного отношения Р следующим образом: .

Матрица любого бинарного отношения обладает свойствами:

1. Если и , то , причем сложение элементов матрицы осуществляется по правилам 0+0=0; 1+1=1; 1+0=0+1=1, а умножение почленно обычным образом, т.е. по правилам 1*0=0*1=0; 1*1=1.

2. Если , то , и матрицы умножаются по обычному правилу умножения матриц, но произведение и сумма элементов при умножении матриц находится по правилам п.1.

4. Если , то и

Пример. Бинарное отношение изображено на рис.2 Его матрица имеет вид .

Решение. Пусть , тогда ;

Пусть Р – бинарное отношение на множестве А, . Отношение Р на множестве А называется рефлексивным, если , где звездочками обозначены нули или единицы. Отношение Р называется иррефлексивным, если . Отношение Р на множестве А называется симметричным , если для и для из условия следует, что . Это значит, что . Отношение Р называется антисимметричным , если из условий и следует, что x=y, т.е. или . Это свойство приводит к тому, что у матрицы все элементы вне главной диагонали будут нулевыми (на главной диагонали тоже могут быть нули). Отношение Р называется транзитивным , если из и следует, что , т.е. .

Пример. Дано отношение Р и .Здесь на главной диагонали матрицы стоят все единицы, следовательно, Р – рефлексивно. Матрица несимметрична, тогда несимметрично и отношение Р

Т.к. не все элементы, стоящие вне главной диагонали, нулевые, то отношение Р не антисимметрично.

Т.е. , следовательно отношение Р – нетранзитивно.

Рефлексивное, симметричное и транзитивное отношение называется отношением эквивалентности . Для обозначения отношений эквивалентности принято использовать символ ~. Условия рефлексивности, симметричности и транзитивности можно записать так:

Пример. 1) Пусть X – множество функций, определенных на всей числовой прямой. Будем считать, что функции f и g связаны отношением ~, если они принимают одинаковые значения в точке 0, то есть f(x)~g(x), если f(0)=g(0). Например, sinx~x, e x ~cosx. Отношение ~ рефлексивно (f(0)=f(0) для любой функции f(x)); симметрично (из f(0)=g(0) следует, что g(0)=f(0)); транзитивно (если f(0)=g(0) и g(0)=h(0), то f(0)=h(0)). Следовательно, ~ является отношением эквивалентности.

2) Пусть ~ – отношение на множестве натуральных чисел, при котором x~y, если x и y дают одинаковые остатки при делении на 5. Например, 6~11, 2~7, 1~6. Легко видеть, что это отношение рефлексивно, симметрично и транзитивно и, значит, является отношением эквивалентности.

Отношением частичного порядка называют бинарное отношение на множестве, если оно рефлексивно, антисимметрично, транзитивно, т.е.

1. - рефлексифность;

2. - антисимметричность;

3. - транзитивность.

Отношением строгого порядка называется бинарное отношение на множестве, если оно антирефлексивно, антисимметрично, транзитивно. Оба эти отношения называются отношениями порядка . Множество, на котором задано отношение порядка, может быть: полностью упорядоченным множеством или частично упорядоченным . Частичный порядок важен в тех случаях, когда мы хотим как-то охарактеризовать старшинство, т.е. решить при каких условиях считать, что один элемент множества превосходит другой. Частично упорядоченное множество называется линейно упорядоченным , если в нем нет несравнимых элементов, т.е. выполняется одно из условий или . Например, множества с естественным порядком на них являются линейно упорядоченными.

функция ". Начнем с частного, но важного случая функций, действующих из в .

Если мы понимаем, что такое отношение , то понять, что такое функция совсем просто. Функция – это частный случай отношения. Каждая функция является отношением, но не каждое отношение является функцией. Какие же отношения являются функциями? Какое дополнительное условие должно выполняться, чтобы отношение являлось функцией?

Вернемся к рассмотрению отношения , действующего из области определения в область значений . Рассмотрим элемент из . Этому элементу соответствует в элемент , такой, что пара принадлежит , что часто записывают в виде: (например, ). Отношению могут принадлежать и другие пары, первым элементом которых может выступать элемент . Для функций такая ситуация невозможна.

Функция – это отношение , в котором элементу из области определения соответствует единственный элемент из области значений.

Отношение "иметь брата", представленное на рис.1, функцией не является. Из точки в области определения идут две дуги в разные точки области значений, следовательно это отношение функцией не является. Содержательно, Елена имеет двух братьев, так что однозначного соответствия между элементом из и элементом из нет.

Если же рассмотреть отношение на тех же множествах "иметь старшего брата", то такое отношение функцией является. У каждого человека братьев может быть много, но только один из них является старшим братом. Функциями являются и такие родственные отношения как "отец" и "мать".

Обычно, когда речь идет о функциях, то для общего обозначения функции используется буква , а не , как в случае отношений, и общая запись имеет привычный вид: .

Рассмотрим хорошо известную функцию . Областью определения этой функции является вся действительная ось: . Область значений функции замкнутый интервал на действительной оси: . График этой функции синусоида, каждой точке на оси соответствует единственная точка графика .

Взаимно однозначная функция

Пусть отношение задает функцию . Что можно сказать об обратном отношении ? Является ли оно также функцией? Совсем не обязательно. Рассмотрим примеры отношений, являющихся функциями.

Для отношения "имеет старшего брата" обратное отношение – это отношение "имеет брата или сестру". Конечно же, это отношение функцией не является. У старшего брата может быть много сестер и братьев.

Для отношений "отец" и "мать" обратным отношением является отношение "сын или дочь", которое также не является функцией, поскольку детей может быть много.

Если рассмотреть функцию , то обратное отношение функцией не является, поскольку одному значению соответствует сколь угодно много значений . Чтобы рассматривать

Человеку присуща потребность в общении, взаимодействии с другими людьми. Удовлетворяя эту потребность, он проявляет и реализует свои возможности.

Человеческая жизнь на всем ее протяжении проявляется, прежде всего, в общении. И все многообразие жизни отражается в столь же бесконечном многообразии общения: в семье, школе, на производстве, в быту, компаниях и т.д.

Общение - одна из универсальных форм активности личности, проявляющаяся в установлении и развитии контактов между людьми, в формировании межличностных отношений и порождаемая потребностями в совместной деятельности.

Общение выполняет целый ряд основных функций :

  • Информационная - функция приема, передачи сведений;
  • Контактная - установление контакта как состояния обоюдной готовности людей к приему и передачи информации;
  • Побудительная - функция стимуляции активности к действию;
  • Координационная - функция взаимного ориентирования и согласования действий;
  • Понимания - предполагает не только прием информации, но и понимание этой информации друг другом;
  • Амотивная - функция возбуждения в партнере нужных эмоций, переживаний, чувств, предполагает эмоциональный обмен, изменение эмоционального состояния;
  • Функция установления отношений - осознание и фиксирование своего социального статуса, социальной роли в конкретной социальной общности.
  • Функция оказания влияния - изменение состояния, поведения, намерений, представлений, установок, мнений, решений, потребностей, действий и т.д.

Наряду с функциями выделяют основные виды общения.

По количеству участников:

  • межличностное;
  • групповое.

По способу общения:

  • вербальное;
  • невербальное.

По положению общающихся:

  • контактное;
  • дистантное.

По условиям общения:

  • официальное;
  • неофициальное.

В структуре общения выделяют три тесно взаимосвязанные, взаимообусловленные стороны:

  • Перцептивная сторона общения - процесс восприятия друг друга.
  • Коммуникативная сторона общения предполагает передачу информации. При этом необходимо учитывать, что человек высказывает 80% от того, что хочет сказать, слушающий - воспринимает 70% и понимает 60% от сказанного.
  • Интерактивная сторона общения предполагает организацию взаимодействия (согласованность действий, распределение функций и др.).

При организации общения необходимо учитывать, что оно проходит ряд этапов, каждый из которых влияет на его эффективность.

Если один из этапов общения выпадает, эффективность общения резко снижается и существует вероятность не достичь тех целей, которые ставились при организации общения. Умение эффективно достигать поставленных целей в общении называется коммуникабельностью, коммуникативной компетентностью, социальным интеллектом.

Отношения. Основные понятия и определения

Определение 2.1. Упорядоченной парой <x , y > называется совокупность двух элементов x и y , расположенных в определенном порядке.

Две упорядоченные пары <x , y > и <u , v> равны межу собой тогда и только тогда, когда x = u и y = v.

Пример 2.1 .

<a , b >, <1, 2>, <x , 4> – упорядоченные пары.

Аналогично можно рассматривать тройки, четверки, n -ки элементов <x 1 , x 2 , … x n >.

Определение 2.2. Прямым (или декартовым )произведением двух множеств A и B называется множество упорядоченных пар, таких, что первый элемент каждой пары принадлежит множеству A , а второй – множеству B :

A ´ B = {<a , b >, ç a Î А и b Ï В }.

В общем случае прямым произведением n множеств А 1 , А 2 ,… А n называется множество А 1 ´ А 2 ´ …´ А n , состоящее из упорядоченных наборов элементов <a 1 , a 2 , …, a n > длины n , таких, что i- ый a i принадлежит множеству А i , a i Î А i .

Пример 2.2 .

Пусть А = {1, 2}, В = {2, 3}.

Тогда A ´ B = {<1, 2>, <1, 3>,<2, 2>,<2, 3>}.

Пример 2.3 .

Пусть А = {x ç0 £ x £ 1} и B = {y ç2 £ y £ 3}

Тогда A ´ B = {< x , y >, ç0 £ x £ 1и2 £ y £ 3}.

Таким образом, множество A ´ B состоит из точек, лежащих внутри и на границе прямоугольника, образованного прямыми x = 0 (ось ординат), x = 1, y = 2и y = 3.

Французский математик и философ Декарт впервые предложил координатное представление точек плоскости. Это исторически первый пример прямого произведения.

Определение 2.3. Бинарным (или двуместным )отношением r называется множество упорядоченных пар.

Если пара <x , y > принадлежит r , то это записывается следующим образом: <x , y > Î r или, что то же самое, xr y .

Пример2.4 .

r = {<1, 1>, <1, 2>, <2, 3>}

Аналогично можно определить n -местное отношение как множество упорядоченных n -ок.

Так как бинарное отношение – множество, то способы задания бинарного отношения такие же, как и способы задания множества (см. разд. 1.1). Бинарное отношение может быть задано перечислением упорядоченных пар или указанием общего свойства упорядоченных пар.

Пример 2.5 .

1. r = {<1, 2>, <2, 1>, <2, 3>} – отношение задано перечислением упорядоченных пар;

2. r = {<x , y > çx + y = 7, x , y – действительные числа} – отношение задано указанием свойства x + y = 7.

Кроме того, бинарное отношение может быть задано матрицей бинарного отношения . Пусть А = {a 1 , a 2 , …, a n } – конечное множество. Матрица бинарного отношения C есть квадратная матрица порядка n , элементы которой c ij определяются следующим образом:

Пример 2.6 .

А = {1, 2, 3, 4}. Зададим бинарное отношение r тремя перечисленными способами.

1. r = {<1, 2>, <1, 3>, <1, 4>, <2, 3>, <2, 4>, <3, 4>} – отношение задано перечислением всех упорядоченных пар.

2. r = {< a i , a j > ça i < a j ; a i , a j Î А } – отношение задано указанием свойства "меньше" на множестве А .

3. – отношение задано матрицей бинарного отношения C .

Пример 2.7 .

Рассмотрим некоторые бинарные отношения.

1. Отношения на множестве натуральных чисел.

а) отношение £ выполняется для пар <1, 2>, <5, 5>, но не выполняется для пары <4, 3>;

б) отношение "иметь общий делитель, отличный от единицы" выполняется для пар <3, 6>, <7, 42>, <21, 15>, но не выполняется для пары <3, 28>.

2. Отношения на множестве точек действительной плоскости.

а) отношение "находиться на одинаковом расстоянии от точки (0, 0)" выполняется для точек (3, 4) и (–2, Ö21), но не выполняется для точек (1, 2) и (5, 3);

б) отношение "быть симметричным относительно оси OY " выполняется для всех точек (x , y ) и (–x , –y ).

3. Отношения на множестве людей.

а) отношение "жить в одном городе";

б) отношение "учиться в одной группе";

в) отношение "быть старше".

Определение 2.4. Областью определения бинарного отношения r называется множество D r = {x çсуществует y, что xr y}.

Определение 2.5. Областью значений бинарного отношения r называется множество R r = {y çсуществует x, что xr y}.

Определение 2.6. Областью задания бинарного отношения r называется множество M r = D r ÈR r .

Используя понятие прямого произведения, можно записать:

r Î D r ´ R r

Если D r = R r = A , то говорят, что бинарное отношение r задано на множестве A .

Пример 2.8 .

Пусть r = {<1, 3>, <3, 3>, <4, 2>}.

Тогда D r = {1, 3, 4}, R r = {3, 2}, M r = {1, 2, 3, 4}.

Операции над отношениями

Так как отношения являются множествами, то все операции над множествами справедливы для отношений.

Пример 2.9 .

r 1 = {<1, 2>, <2, 3>, <3, 4>}.

r 2 = {<1, 2>, <1, 3>, <2, 4>}.

r 1 È r 2 = {<1, 2>, <1, 3>, <2, 3>, <2, 4>, <3, 4>}.

r 1 Ç r 2 = {<1, 2>}.

r 1 \ r 2 = {<2, 3>, <3, 4>}.

Пример 2.10 .

Пусть R – множество действительных чисел. Рассмотрим на этом множестве следующие отношения:

r 1 – " £ "; r 2 – " = "; r 3 – " < "; r 4 – " ³ "; r 5 – " > ".

r 1 = r 2 È r 3 ;

r 2 = r 1 Ç r 4 ;

r 3 = r 1 \ r 2 ;

r 1 = ;

Определим еще две операции над отношениями.

Определение 2.7. Отношение называется обратным к отношению r (обозначается r – 1), если

r – 1 = {<x , y > ç< y, x > Î r }.

Пример 2.11 .

r = {<1, 2>, <2, 3>, <3, 4>}.

r – 1 = {<2, 1>, <3, 2>, <4, 3>}.

Пример 2.12 .

r = {<x , y > ç x y = 2, x , y Î R }.

r – 1 = {<x , y > ç< y, x > Î r } = r – 1 = {<x , y > çy x = 2, x , y Î R } = {<x , y > ç– x + y = 2, x , y Î R }.

Определение 2.8. Композицией двух отношений r и s называется отношение

s r = {<x , z > çсуществует такое y , что <x , y > Î r и < y, z > Îs }.

Пример 2.13 .

r = {<x , y > çy = sinx }.

s = {<x , y > çy = Öx }.

s r = {<x , z > çсуществует такое y , что <x , y > Î r и < y, z > Îs } = {<x , z > çсуществует такое y , что y = sinx и z = Öy } = {<x , z > ç z = Ösinx }.

Определение композиции двух отношенийсоответствует определению сложной функции:

y = f (x ), z = g (y ) Þ z = g (f (x )).

Пример 2.14 .

r = {<1, 1>, <1, 2>, <1, 3>, <3, 1>}.

s = {<1, 2>, <1, 3>, <2, 2>, <3, 2>, <3, 3>}.

Процесс нахождения s r в соответствии с определением композиции удобно изобразить таблицей, в которой реализуется перебор всех возможных значений x , y , z . для каждой пары <x , y > Î r нужно рассмотреть все возможные пары < y, z > Îs (табл. 2.1).

Таблица 2.1

<x , y > Î r < y, z > Îs <x , z > Îs r
<1, 1> <1, 1> <1, 2> <1, 3> <1, 3> <3, 1> <3, 1> <1, 2> <1, 3> <2, 2> <3, 2> <3, 3> <1, 2> <1, 3> <1, 2> <1, 3> <1, 2> <1, 2> <1, 3> <3, 2> <3, 3>

Заметим, что первая, третья и четвертая, а также вторая и пятая строки последнего столбца таблицы содержат одинаковые пары. Поэтому получим:

s r = {<1, 2>, <1, 3>, <3, 2>, <3, 3>}.

Свойства отношений

Определение 2.9. Отношение r называется рефлексивным на множестве X , если для любого x Î X выполняется xr x .

Из определения следует, что всякий элемент < x , x > Î r .

Пример 2.15 .

а) Пусть X – конечное множество, X = {1, 2, 3} и r = {<1, 1>, <1, 2>, <2, 2>, <3, 1>, <3, 3>}. Отношение r рефлексивно. Если X – конечное множество, то главная диагональ матрицы рефлексивного отношения содержит только единицы. Для нашего примера

б) Пусть X r отношение равенства. Это отношение рефлексивно, т.к. каждое число равно самому себе.

в) Пусть X – множество людей и r отношение "жить в одном городе". Это отношение рефлексивно, т.к. каждый живет в одном городе сам с собой.

Определение 2.10. Отношение r называется симметричным на множестве X , если для любых x , y Î X из xry следует yr x .

Очевидно, что r симметрично тогда и только тогда, когда r = r – 1 .

Пример 2.16 .

а) Пусть X – конечное множество, X = {1, 2, 3} и r = {<1, 1>, <1, 2>, <1, 3>, <2, 1>, <3, 1>, <3, 3>}. Отношение r симметрично. Если X – конечное множество, то матрица симметричного отношения симметрична относительно главной диагонали. Для нашего примера

б) Пусть X – множество действительных чисел и r отношение равенства. Это отношение симметрично, т.к. если x равно y , то и y равно x .

в) Пусть X – множество студентов и r отношение "учиться в одной группе". Это отношение симметрично, т.к. если x учится в одной группе с y , то и y учится в одной группе с x .

Определение 2.11. Отношение r называется транзитивным на множестве X , если для любых x , y , z Î X из xry и yr z следует xr z .

Одновременное выполнение условий xry , yr z , xr z означает, что пара <x , z > принадлежит композиции r r . Поэтому для транзитивности r необходимо и достаточно, чтобы множество r r являлось подмножеством r , т. е. r r Í r .

Пример 2.17 .

а) Пусть X – конечное множество, X = {1, 2, 3} и r = {<1, 1>, <1, 2>, <2, 3>, <1, 3>}. Отношение r транзитивно, т. к. наряду с парами <x , y >и <y , z >имеется пара<x , z >. Например, наряду с парами <1, 2>, и <2, 3> имеется пара <1, 3>.

б) Пусть X – множество действительных чисел и r отношение £ (меньше или равно). Это отношение транзитивно, т.к. если x £ y и y £ z , то x £ z .

в) Пусть X – множество людей и r отношение "быть старше". Это отношение транзитивно, т.к. если x старше y и y старше z , то x старше z .

Определение 2.12. Отношение r называется отношением эквивалентности на множестве X , если оно рефлексивно, симметрично и транзитивно на множестве X .

Пример 2.18 .

а) Пусть X – конечное множество, X = {1, 2, 3} и r = {<1, 1>, <2, 2>, <3, 3>}. Отношение r является отношением эквивалентности.

б) Пусть X – множество действительных чисел и r отношение равенства. Это отношение эквивалентности.

в) Пусть X – множество студентов и r отношение "учиться в одной группе". Это отношение эквивалентности.

Пусть r X .

Определение 2.13. Пусть r – отношение эквивалентности на множестве X и x Î X . Классом эквивалентности , порожденным элементом x , называется подмножество множества X , состоящее из тех элементов y Î X , для которых xry . Класс эквивалентности, порожденный элементом x , обозначается через [x ].

Таким образом, [x ] = {y Î X | xry }.

Классы эквивалентности образуют разбиение множества X , т. е. систему непустых попарно непересекающихся его подмножеств, объединение которых совпадает со всем множеством X .

Пример 2.19 .

а) Отношение равенства на множестве целых чисел порождает следующие классы эквивалентности: для любого элемента x из этого множества [x ] = {x }, т.е. каждый класс эквивалентности состоит из одного элемента.

б) Класс эквивалентности, порожденный парой <x , y > определяется соотношением:

[<x , y >] = .

Каждый класс эквивалентности, порожденный парой <x , y >, определяет одно рациональное число.

в) Для отношения принадлежности к одной студенческой группе классом эквивалентности является множество студентов одной группы.

Определение 2.14. Отношение r называется антисимметричным на множестве X , если для любых x , y Î X из xry и yr x следует x = y .

Из определения антисимметричности следует, что всякий раз, когда пара <x , y > принадлежит одновременно r и r – 1 , должно выполняться равенство x = y . Другими словами, r Ç r – 1 состоит только из пар вида < x , x >.

Пример 2.20 .

а) Пусть X – конечное множество, X = {1, 2, 3} и r = {<1, 1>, <1, 2>, <1, 3>, <2, 2>, <2, 3>, <3, 3>}. Отношение r антисимметрично.

Отношение s = {<1, 1>, <1, 2>, <1, 3>, <2, 1>, <2, 3>, <3, 3>} неантисимметрично. Например, <1, 2> Îs, и <2, 1> Îs , но 1 ¹2.

б) Пусть X – множество действительных чисел и r отношение £ (меньше или равно). Это отношение антисимметрично, т.к. если x £ y , и y £ x , то x = y .

Определение 2.15. Отношение r называется отношением частичного порядка (или просто частичным порядком) на множестве X , если оно рефлексивно, антисимметрично и транзитивно на множестве X . Множество X в этом случае называют частично упорядоченным и указанное отношение часто обозначают символом £, если это не приводит к недоразумениям.

Отношение, обратное отношению частичного порядка будет, очевидно, отношением частичного порядка.

Пример 2.21 .

а) Пусть X – конечное множество, X = {1, 2, 3} и r = {<1, 1>, <1, 2>, <1, 3>, <2, 2>, <2, 3>, <3, 3>}. Отношение r

б) Отношение А Í В на множестве подмножеств некоторого множества U есть отношение частичного порядка.

в) Отношение делимости на множестве натуральных чиселесть отношение частичного порядка.

Функции. Основные понятия и определения

В математическом анализе принято следующее определение функции.

Переменная y называется функцией от переменной x , если по некоторому правилу или закону каждому значению x соответствует одно определенное значение y = f (x ). Область изменения переменной x называется областью определения функции, а область изменения переменной y – областью значений функции. Если одному значению x соответствует несколько (и даже бесконечно много значений y ), то функция называется многозначной. Впрочем, в курсе анализа функций действительных переменных избегают многозначных функций и рассматривают однозначные функции.

Рассмотрим другое определение функции с точки зрения отношений.

Определение 2.16. Функцией называется любое бинарное отношение, которое не содержит двух пар с равными первыми компонентами и различными вторыми.

Такое свойство отношения называется однозначностью или функциональностью .

Пример 2.22 .

а) {<1, 2>, <3, 4>, <4, 4>, <5, 6>} – функция.

б) {<x , y >: x , y Î R , y = x 2 } – функция.

в) {<1, 2>, <1, 4>, <4, 4>, <5, 6>} – отношение, но не функция.

Определение 2.17. Если f – функция, то D f область определения , а R f область значений функции f .

Пример 2.23 .

Для примера 2.22 а) D f – {1, 3, 4, 5}; R f – {2, 4, 6}.

Для примера 2.22 б) D f = R f = (–¥, ¥).

Каждому элементу x D f функция ставит в соответствие единственный элемент y R f . Это обозначается хорошо известной записью y = f (x ). Элемент x называется аргументом функции или прообразом элемента y при функции f , а элемент y значением функции f на x или образом элемента x при f .

Итак, из всех отношений функции выделяются тем, что каждый элемент из области определения имеет единственный образ.

Определение 2.18. Если D f = X и R f = Y , то говорят, что функция f определена на X и принимает свои значения на Y , а f называют отображением множества X на Y (X ® Y ).

Определение 2.19. Функции f и g равны, если их область определения – одно и то же множество D , и для любого x Î D справедливо равенство f (x ) = g (x ).

Это определение не противоречит определению равенства функций как равенства множеств (ведь мы определили функцию как отношение, т. е. множество): множества f и g равны, тогда и только тогда, когда они состоят из одних и тех же элементов.

Определение 2.20. Функция (отображение) f называется сюръективной или просто сюръекцией , если ля любого элемента y Y существует элемент x Î X , такой, что y = f (x ).

Таким образом, каждая функция f является сюръективным отображением (сюръекцией) D f ® R f .

Если f – сюръекция, а X и Y – конечные множества, то ³ .

Определение 2.21. Функция (отображение) f называется инъективной или просто инъекцией или взаимно однозначной , если из f (a ) = f (b ) следует a = b .

Определение 2.22. Функция (отображение) f называется биективной или просто биекцией , если она одновременно инъективна и сюръективна.

Если f – биекция, а X и Y – конечные множества, то = .

Определение 2.23. Если область значений функции D f состоит из одного элемента, то f называется функцией-константой .

Пример 2.24 .

а) f (x ) = x 2 есть отображение множества действительных чисел на множество неотрицательных действительных чисел. Т.к. f (–a ) = f (a ), и a ¹ –a , то эта функция не является инъекцией.

б) Для каждого x R = (– , ) функция f (x ) = 5 – функция-константа. Она отображает множество R на множество {5}. Эта функция сюръективна, но не инъективна.

в) f (x ) = 2x + 1 является инъекцией и биекцией, т.к. из 2x 1 +1 = 2x 2 +1 следует x 1 = x 2 .

Определение 2.24. Функция, реализующая отображение X 1 ´ X 2 ´...´ X n ®Y называется n-местной функцией.

Пример 2.25 .

а) Сложение, вычитание, умножение и деление являются двуместными функциями на множестве R действительных чисел, т. е. функциями типа R 2 ® R .

б) f (x , y ) = – двуместная функция, реализующая отображение R ´ (R \ )® R . Эта функция не является инъекцией, т.к. f (1, 2) = f (2, 4).

в) Таблица выигрышей лотереи задает двуместную функцию, устанавливающую соответствие между парами из N 2 (N – множество натуральных чисел) и множеством выигрышей.

Поскольку функции являются бинарными отношениями, то можно находить обратные функции и применять операцию композиции. Композиция любых двух функций есть функция, но не для каждой функции f отношение f –1 является функцией.

Пример 2.26 .

а) f = {<1, 2>, <2, 3>, <3, 4>, <4, 2>} – функция.

Отношение f –1 = {<2, 1>, <3, 2>, <4, 3>, <2, 4>} не является функцией.

б) g = {<1, a >, <2, b >, <3, c >, <4, D >} – функция.

g -1 = {<a , 1>, <b , 2>, <c , 3>, <D , 4>} тоже функция.

в) Найдем композицию функций f из примера а) и g -1 из примера б). Имеем g -1f = {<a , 2>, <b , 3>, <c , 4>, <d , 2>}.

fg -1 = Æ.

Заметим, что (g -1f )(a ) = f (g -1 (a )) = f (1) = 2; (g -1f )(c ) = f (g -1 (c )) = f (3) = 4.

Элементарной функцией в математическом анализе называется всякая функция f , являющаяся композицией конечного числа арифметических функций, а также следующих функций:

1) Дробно-рациональные функции, т.е. функции вида

a 0 + a 1 x + ... + a n x n

b 0 + b 1 x + ... + b m x m .

2) Степенная функция f (x ) = x m , где m – любое постоянное действительное число.

3) Показательная функция f (x ) = e x .

4) логарифмическая функция f (x ) = log a x , a >0, a 1.

5) Тригонометрические функции sin, cos, tg, ctg, sec, csc .

6) Гиперболические функции sh, ch, th, cth .

7) Обратные тригонометрические функции arcsin , arccos и т.д.

Например, функция log 2 (x 3 +sincos 3x ) является элементарной, т.к. она есть композиция функций cosx , sinx , x 3 , x 1 + x 2 , logx , x 2 .

Выражение, описывающее композицию функций, называется формулой.

Для многоместной функции справедлив следующий важный результат, полученный А. Н. Колмогоровым и В. И. Арнольдом в 1957 г. и являющийся решением 13-ой проблемы Гильберта:

Теорема. Всякая непрерывная функция n переменных представима в виде композиции непрерывных функций двух переменных.

Способы задания функций

1. Наиболее простой способ задания функций – это таблицы (табл. 2.2):

Таблица 2.2

Однако, таким образом могут быть заданы функции, определенные на конечных множествах.

Если функция, определенная на бесконечном множестве (отрезке, интервале), задана в конечном числе точек, например, в виде тригонометрических таблиц, таблиц специальных функций и т.п., то для вычисления значений функций в промежуточных точках пользуются правилами интерполяции.

2. Функция может быть задана в виде формулы, описывающей функцию как композицию других функций. Формула задает последовательность вычисления функции.

Пример 2.28 .

f (x ) = sin (x + Öx ) является композицией следующих функций:

g (y ) = Öy ; h (u, v) = u + v; w (z ) = sinz.

3. Функция может быть задана в виде рекурсивной процедуры. Рекурсивная процедура задает функцию, определенную на множестве натуральных чисел, т. е. f (n ), n = 1, 2,... следующим образом: а) задается значение f (1) (или f (0)); б) значение f (n + 1) определяется через композицию f (n ) и других известных функций. Простейшим примером рекурсивной процедуры является вычисление n !: а) 0! = 1; б) (n + 1)! = n !(n + 1). Многие процедуры численных методов являются рекурсивными процедурами.

4. Возможны способы задания функции, не содержащие способа вычисления функции, а только описывающие ее. Например:

f M (x ) =

Функция f M (x ) – характеристическая функция множества M .

Итак, по смыслу нашего определения, задать функцию f – значит задать отображение X ® Y , т.е. определить множество X ´Y , поэтому вопрос сводится к заданию некоторого множества. Однако можно определить понятие функции, не используя языка теории множеств, а именно: функция считается заданной, если задана вычислительная процедура, которая по заданному значению аргумента находит соответствующее значение функции. Функция, определенная таким образом, называется вычислимой.

Пример 2.29 .

Процедура определения чисел Фибоначчи , задается соотношением

F n = F n- 1 + F n- 2 (n ³ 2) (2.1)

с начальными значениями F 0 = 1, F 1 = 1.

Формула (2.1) вместе с начальными значениями определяет следующий ряд чисел Фибоначчи:

n 0 1 2 3 4 5 6 7 8 9 10 11 …
F n 1 1 2 3 5 8 13 21 34 55 89 144 …

Вычислительная процедура определения значения функции по заданному значению аргумента есть не что иное, как алгоритм .

Контрольные вопросы к теме 2

1. Укажите способы задания бинарного отношения.

2. Главная диагональ матрицы какого отношения содержит только единицы?

3. Для какого отношения r всегда выполняется условие r = r – 1 ?

4. Для какого отношения r всегда выполняется условие r r Í r .

5. Ввести отношения эквивалентности и частичного порядка на множестве всех прямых на плоскости.

6. Укажите способы задания функций.

7. Какое из следующих утверждений справедливо?

а) Всякое бинарное отношение есть функция.

б) Всякая функция есть бинарное отношение.

Тема 3. ГРАФЫ

Первая работа по теории графов принадлежащая Эйлеру, появилась в 1736 году. Вначале эта теория была связана с математическими головоломками и играми. Однако впоследствии теория графов стала использоваться в топологии, алгебре, теории чисел. В наше время теория графов находит применение в самых разнообразных областях науки, техники и практической деятельности. Она используется при проектировании электрических сетей, планировании транспортных перевозок, построении молекулярных схем. Применяется теория графов также в экономике, психологии, социологии, биологии.


Разработки