Cледствие доказательства гипотезы Пуанкаре. Что же доказал Григорий Перельман? Теорема пуанкаре простыми словами

Практически каждый человек, даже тот, кто не имеет никакого отношения к математике, слышал слова «гипотеза Пуанкаре», но не все могут объяснить, в чем ее суть. Для многих высшая математика кажется чем-то очень сложным и недоступным для понимания. Поэтому попробуем разобраться, что же означает гипотеза Пуанкаре простыми словами.

Содержание:

Что такое гипотеза Пуанкаре?

Формулировка гипотезы в оригинале звучит так: «Всякое компактное односвязное трехмерное многообразие без края гомеоморфно трёхмерной сфере ».

Шар – это геометрическое трехмерное тело, его поверхность называется сферой, она двумерна и состоит из точек трехмерного пространства, которые равноудалены от одной, не принадлежащей этой сфере, точки – центра шара. Кроме двумерных сфер, существуют еще трехмерные сферы, состоящие из множества точек четырехмерного пространства, которые так же равноудалены от одной, не принадлежащей сфере, точки – ее центра. Если двухмерные сферы мы можем увидеть собственными глазами, то трехмерные не подвластны нашему зрительному восприятию.



Поскольку мы не имеем возможности увидеть Вселенную, то можно предположить, что она и есть трехмерная сфера, в которой живет все человечество. В этом и состоит сущность гипотезы Пуанкаре. А именно то, что Вселенная имеет следующие свойства: трехмерность, бескрайность, односвязность, компактность. Понятие «гомеоморфность» в гипотезе означает высочайшую степень схожести, подобия, для случая со Вселенной – неотличимость.

Кто такой Пуанкаре?

Жюль Анри Пуанкаре – величайший математик, который родился в 1854 году во Франции. Его интересы не ограничивались только математической наукой, он изучал физику, механику, астрономию, философию. Был членом более 30 научных академий мира, в том числе Петербургской академии наук. Историки все времен и народов причисляют к величайшим математикам мира Давида Гильберта и Анри Пуанкаре. В 1904 году ученый издал знаменитую работу, которая содержала предположение, известное на сегодняшний день как «гипотеза Пуанкаре». Именно трехмерное пространство для математиков оказалось очень сложным для исследования, найти доказательства других случаев не составило труда. В течение около одного столетия доказывалась истинность этой теоремы.




В начале ХХІ века в Кембридже была учреждена премия в один миллион долл. США за решение этой научной задачи, которая входила в список проблем тысячелетия. Только российский математик из Санкт-Петербурга Григорий Перельман смог это сделать для трехмерной сферы. В 2006 году за это достижение ему была присвоена медаль Филдса, но он отказался от ее получения.

К заслугам в научной деятельности Пуанкаре можно отнести следующие достижения:

  • основание топологии (разработка теоретических основ различных явлений и процессов);
  • создание качественной теории дифференциальных уравнений;
  • разработка теории аморфных функций, которая стала основой специальной теории относительности;
  • выдвижение теоремы о возвращении;
  • разработка новейших, эффективнейших методов небесной механики.

Доказательство гипотезы

Односвязному трехмерному пространству присваиваются геометрические свойства, оно разделяется на метрические элементы, которые имеют расстояния между собой с образованием углов. Для упрощения берется в качестве образца одномерное многообразие, в котором на эвклидовой плоскости к гладкой замкнутой кривой проводятся в каждой точке касательные вектора, равные 1. При обходе кривой вектор поворачивается с определенной угловой скоростью, равной кривизне. Чем сильнее изгиб линии, тем больше кривизна. Кривизна имеет положительный наклон, если вектор скорости повернут в сторону внутренней части плоскости, которую делит линия, и отрицательный, если повернут вовне. В местах перегиба кривизна равна 0. Теперь каждой точке кривой назначается вектор, перпендикулярный вектору угловой скорости, а длиной равный величине кривизны. Он повернут внутрь, когда кривизна имеет положительный наклон, и вовне – когда отрицательный. Соответствующий вектор определяет направление и скорость, с которой движется каждая точка на плоскости. Если провести в любом месте замкнутую кривую, то при такой эволюции она превратится в окружность. Это справедливо для трехмерного пространства, что и требовалось доказать.




Пример: из воздушного шара при деформации без разрывов можно сделать разные фигуры. Но бублик сделать не получится, для этого его нужно только разрезать. И наоборот, имея бублик, никак не сделаешь цельный шар. Хотя из любой другой поверхности без разрывов при деформации можно получить сферу. Это свидетельствует о том, что эта поверхность гомеоморфна шару. Любой шар можно обвязать ниткой с одним узлом, с бубликом это сделать невозможно.

Шар – это самая простая трехмерная плоскость, которую можно деформировать и свернуть в точку и наоборот.

Важно! Гипотеза Пуанкаре утверждает эквивалентность замкнутого n-мерного многообразия n-мерной сфере в случае его гомеоморфности ей. Она стала отправной точкой в развитии теории о многомерных плоскостях.

Ученые считают, что 38-летний российский математик Григорий Перельман предложил верное решение проблемы Пуанкаре. Об этом на научном фестивале в Эксетере (Великобритания) заявил профессор математики Стэнфордского университета Кит Девлин.

Проблема (ее также называют задачей или гипотезой) Пуанкаре относится к числу семи важнейших математических проблем, за решение каждой из которых назначил премию в один миллион долларов. Именно это и привлекло столь широкое внимание к результатам, полученным Григорием Перельманом, сотрудником лаборатории математической физики .

Ученые всего мира узнали о достижениях Перельмана из двух препринтов (статей, предваряющих полноценную научную публикацию), размещенных автором в ноябре 2002-го и марте 2003 года на сайте архива предварительных работ Лос-Аламосской научной лаборатории .

Согласно правилам, принятым Научным консультативным советом института Клэя, новая гипотеза должна быть опубликована в специализированном журнале, имеющем "международную репутацию". Кроме того, по правилам Института, решение о выплате приза принимает, в конечном счёте, "математическое сообщество": доказательство не должно быть опровергнуто в течение двух лет после публикации. Проверкой каждого доказательства занимаются математики в разных странах мира.

Проблема Пуанкаре

Родился 13 июня 1966 года в Ленинграде, в семье служащих. Окончил знаменитую среднюю школу № 239 с углубленным изучением математики. В 1982 году в составе команды советских школьников участвовал в Международной математической олимпиаде, проходившей в Будапеште. Был без экзаменов зачислен на матмех Ленинградского государственного университета. Побеждал на факультетских, городских и всесоюзных студенческих математических олимпиадах. Получал Ленинскую стипендию. Окончив университет, Перельман поступил в аспирантуру при Санкт-Петербургском отделении Математического института им.В.А.Стеклова. Кандидат физико-математических наук. Работает в лаборатории математической физики.

Проблема Пуанкаре относится к области так называемой топологии многообразий - особым образом устроенных пространств, имеющих разную размерность. Двухмерные многообразия можно наглядно представить себе, например, на примере поверхности трехмерных тел - сферы (поверхности шара) или тора (поверхности бублика).

Легко вообразить, что произойдет с воздушным шариком, если его деформировать (изгибать, скручивать, тянуть, сжимать, пережимать, сдувать или надувать). Ясно, что при всех вышеперечисленных деформациях шарик будет изменять свою форму в широких пределах. Однако мы никогда не сможем превратить шарик в бублик (или наоборот) без нарушения непрерывности его поверхности, то есть не разрывая. В этом случае топологи говорят, что сфера (шарик) негомеоморфна тору (бублику). Это означает, что данные поверхности невозможно отобразить одну на другую. Говоря простым языком, сфера и тор различны по своим топологическим свойствам. А поверхность воздушного шарика при всевозможных его деформациях гомеоморфна сфере, равно как поверхность спасательного круга - тору. Иными словами, любая замкнутая двумерная поверхность, не имеющая сквозных отверстий, обладает теми же топологическими свойствами, что и двухмерная сфера.

ТОПОЛОГИЯ, раздел математики, занимающийся изучением свойств фигур (или пространств), которые сохраняются при непрерывных деформациях, таких, например, как растяжение, сжатие или изгибание. Непрерывная деформация - это деформация фигуры, при которой не происходит разрывов (т.е. нарушения целостности фигуры) или склеиваний (т.е. отождествления ее точек).
ТОПОЛОГИЧЕСКОЕ ПРЕОБРАЗОВАНИЕ одной геометрической фигуры на другую - есть отображение произвольной точки Р первой фигуры на точку Р` другой фигуры, которое удовлетворяет следующим условиям: 1) каждой точке Р первой фигуры должна соответствовать одна и только одна точка Р` второй фигуры, и наоборот; 2) Отображение должно быть взаимно непрерывно. Например, имеются две точки Р и N, принадлежащие одной фигуре. Если при движении точки Р к точке N расстояние между ними стремится к нулю, то расстояние между точками Р` и N` другой фигуры тоже должно стремиться к нулю, и наоборот.
ГОМЕОМОРФИЗМ. Геометрические фигуры, переходящие одна в другую при топологических преобразованиях, называются гомеоморфными. Окружность и граница квадрата гомеоморфны, так как их можно перевести друг в друга топологическим преобразованием (т.е. изгибанием и растяжением без разрывов и склеиваний, например, растяжением границы квадрата на описанную вокруг него окружность). Область, в которой любую замкнутую простую (т.е. гомеоморфную окружности) кривую можно стянуть в точку, оставаясь все время в этой области, называется односвязной, а соответствующее свойство области - односвязностью. Если же некоторую замкнутую простую кривую этой области нельзя стянуть в точку, оставаясь все время в этой области, то область называется многосвязной, а соответствующее свойство области - многосвязностью.

Проблема Пуанкаре утверждает то же самое для трехмерных многообразий (для двухмерных многообразий, таких как сфера, это положение было доказано еще в XIX веке). Как заметил французский математик, одно из важнейших свойств двухмерной сферы состоит в том, что любая замкнутая петля (например, лассо), лежащая на ней, может быть стянута в одну точку, не покидая при этом поверхности. Для тора это справедливо не всегда: петля, проходящая через его отверстие, стянется в точку либо при разломе тора, либо при разрыве самой петли. В 1904 году Пуанкаре высказал предположение, что если петля может стягиваться в точку на замкнутой трехмерной поверхности, то такая поверхность гомеоморфна трехмерной сфере. Доказательство этой гипотезы оказалось чрезвычайно сложной задачей.

Сразу уточним: упомянутая нами формулировка проблемы Пуанкаре говорит вовсе не о трехмерном шаре, который мы можем представить себе без особого труда, а о трехмерной сфере, то есть о поверхности четырехмерного шара, который представить себе уже гораздо труднее. Но в конце 1950-х годов неожиданно выяснилось, что с многообразиями высоких размерностей работать гораздо легче, чем с трех- и четырехмерными. Очевидно, отсутствие наглядности - далеко не главная трудность, с которой сталкиваются математики в своих исследованиях.

Задача, подобная проблеме Пуанкаре, для размерностей 5 и выше была решена в 1960 году Стивеном Смэйлом (Stephen Smale), Джоном Стэллингсом (John Stallings) и Эндрю Уоллесом (Andrew Wallace). Подходы, использованные этими учеными, оказались, однако, неприменимы к четырехмерным многообразиям. Для них проблема Пуанкаре была доказана лишь в 1981 году Майклом Фридманом (Michael Freedman). Трехмерный же случай оказался самым сложным; его решение и предлагает Григорий Перельман.

Необходимо отметить, что у Перельмана есть соперник. В апреле 2002 года профессор математики британского университета Саутгемптон Мартин Данвуди предложил свой метод решения проблемы Пуанкаре и теперь ожидает вердикт от института Клэя.

Специалисты считают, что решение проблемы Пуанкаре позволит сделать серьезный шаг в математическом описании физических процессов в сложных трехмерных объектах и даст новый импульс развитию компьютерной топологии. Метод, который предлагает Григорий Перельман, приведет к открытию нового направления в геометрии и топологии. Петербургский математик вполне может претендовать на премию Филдса (аналог Нобелевской премии, которую по математике не присуждают).

Между тем, некоторые находят поведение Григория Перельмана странным. Вот что пишет британская газета "Гардиан": "Скорее всего, подход Перельмана к разгадке проблемы Пуанкаре верный. Но не все так просто. Перельман не предоставляет доказательств того, что работа издана в качестве полноценной научной публикации (препринты таковой не считаются). А это необходимо, если человек хочет получить награду от института Клэя. Кроме того, он вообще не проявляет интереса к деньгам".

Видимо, для Григория Перельмана, как для настоящего ученого, деньги - не главное. За решение любой из так называемых "задач тысячелетия" истинный математик продаст душу дьяволу.

Список тысячелетия

8 августа 1900 года на международном математическом конгрессе в Париже математик Дэвид Гилберт (David Hilbert) изложил список проблем, которые, как он полагал, предстояло решить в ХХ веке. В списке было 23 пункта. Двадцать один из них на данный момент решены. Последней решенной проблемой из списка Гилберта была знаменитая теорема Ферма , с которой ученые не могли справиться в течение 358 лет. В 1994 году свое решение предложил британец Эндрю Уайлз. Оно и оказалось верным.

По примеру Гилберта в конце прошлого века многие математики пытались сформулировать подобные стратегические задачи на ХХI век. Один из таких списков приобрел широкую известность благодаря бостонскому миллиардеру Лэндону Клэю (Landon T. Clay). В 1998 году на его средства в Кембридже (Массачусетс, США) был основан и установлены премии за решение ряда важнейших проблем современной математики. 24 мая 2000 года эксперты института выбрали семь проблем - по числу миллионов долларов, выделенных на премии. Список получил название Millennium Prize Problems:

1. Проблема Кука (сформулирована в 1971 году)

Допустим, что вы, находясь в большой компании, хотите убедиться, что там же находится ваш знакомый. Если вам скажут, что он сидит в углу, то достаточно будет доли секунды, чтобы, бросив взгляд, убедиться в истинности информации. В отсутствие этой информации вы будете вынуждены обойти всю комнату, рассматривая гостей. Это говорит о том, что решение какой-либо задачи часто занимает больше времени, чем проверка правильности решения.

Стивен Кук сформулировал проблему: может ли проверка правильности решения задачи быть более длительной, чем само получение решения, независимо от алгоритма проверки. Эта проблема также является одной из нерешенных задач из области логики и информатики. Ее решение могло бы революционным образом изменить основы криптографии, используемой при передаче и хранении данных.

2. Гипотеза Римана (сформулирована в 1859 году)

Некоторые целые числа не могут быть выражены как произведение двух меньших целых чисел, например 2, 3, 5, 7 и так далее. Такие числа называются простыми и играют важную роль в чистой математике и ее приложениях. Распределение простых чисел среди ряда всех натуральных чисел не подчиняется никакой закономерности. Однако немецкий математик Риман высказал предположение, касающееся свойств последовательности простых чисел. Если гипотеза Римана будет доказана, то это приведет к революционному изменению наших знаний в области шифрования и к невиданному прорыву в области безопасности Интернета.

3. Гипотеза Берча и Свиннертон-Дайера (сформулирована в 1960 году)

Связана с описанием множества решений некоторых алгебраических уравнений от нескольких переменных с целыми коэффициентами. Примером подобного уравнения является выражение x 2 + y 2 = z 2 . Эвклид дал полное описание решений этого уравнения, но для более сложных уравнений поиск решений становится чрезвычайно трудным.

4. Гипотеза Ходжа (сформулирована в 1941 году)

В ХХ веке математики открыли мощный метод исследования формы сложных объектов. Основная идея заключается в том, чтобы использовать вместо самого объекта простые "кирпичики", которые склеиваются между собой и образуют его подобие. Гипотеза Ходжа связана с некоторыми предположениями относительно свойств таких "кирпичиков" и объектов.

5. Уравнения Навье - Стокса (сформулированы в 1822 году)

Если плыть в лодке по озеру, то возникнут волны, а если лететь в самолете, в воздухе возникнут турбулентные потоки. Предполагается, что эти и другие явления описываются уравнениями, известными как уравнения Навье - Стокса. Решения этих уравнений неизвестны, и при этом даже неизвестно, как их решать. Необходимо показать, что решение существует и является достаточно гладкой функцией. Решение этой проблемы позволит существенно изменить способы проведения гидро- и аэродинамических расчетов.

6. Проблема Пуанкаре (сформулирована в 1904 году)

Если натянуть резиновую ленту на яблоко, то можно, медленно перемещая ленту без отрыва от поверхности, сжать ее до точки. С другой стороны, если ту же самую резиновую ленту соответствующим образом натянуть вокруг бублика, то никаким способом невозможно сжать ленту в точку, не разрывая ленту или не ломая бублик. Говорят, что поверхность яблока односвязна, а поверхность бублика - нет. Доказать, что односвязна только сфера, оказалось настолько трудно, что математики ищут правильный ответ до сих пор.

7. Уравнения Янга - Миллса (сформулированы в 1954 году)

Уравнения квантовой физики описывают мир элементарных частиц. Физики Янг и Миллс, обнаружив связь между геометрией и физикой элементарных частиц, написали свои уравнения. Тем самым они нашли путь к объединению теорий электромагнитного, слабого и сильного взаимодействий. Из уравнений Янга - Миллса следовало существование частиц, которые действительно наблюдались в лабораториях во всем мире, поэтому теория Янга - Миллса принята большинством физиков несмотря на то, что в рамках этой теории до сих пор не удается предсказывать массы элементарных частиц.

Михаил Витебский

Фото Н. Четвериковой Последним великим достижением чистой математики называют доказательство петербуржцем Григорием Перельманом в 2002—2003 годах гипотезы Пуанкаре, высказанной в 1904 году и гласящей: «всякое связное, односвязное, компактное трехмерное многообразие без края гомеоморфно сфере S 3 ».

В этой фразе имеется несколько терминов, которые я постараюсь объяснить так, чтобы их общий смысл стал понятен нематематикам (я предполагаю, что читатель закончил среднюю школу и кое-что из школьной математики еще помнит).

Начнем с понятия гомеоморфизма, центрального в топологии. Вообще, топологию часто определяют как «резиновую геометрию», т. е. как науку о свойствах геометрических образов, которые не меняются при плавных деформациях без разрывов и склеек, а точнее, при возможности установить между двумя объектами взаимно-однозначное и взаимно-непрерывное соответствие.

Главную идею проще всего объяснить на классическом примере кружки и бублика. Первую можно превратить во второй непрерывной деформацией: Эти рисунки наглядно показывают, что кружка гомеоморфна бублику, причем этот факт верен как для их поверхностей (двумерных многообразий, называемых тором), так и для заполненных тел (трехмерных многообразий с краем).

Приведем толкование остальных терминов, фигурирующих в формулировке гипотезы.

1. Трехмерное многообразие без края. Это такой геометрический объект, у которого каждая точка имеет окрестность в виде трехмерного шара. Примерами 3-многообразий может служить, во-первых, всё трехмерное пространство, обозначаемое R 3 , а также любые открытые множества точек в R 3 , к примеру внутренность полнотория (бублика). Если рассмотреть замкнутое полно-торие, т. е. добавить и его граничные точки (поверхность тора), то мы получим уже многообразие с краем -у краевых точек нет окрестностей в виде шарика, но лишь в виде половинки шарика.

2. Связное. Понятие связности здесь самое простое. Многообразие связно, если оно состоит из одного куска, или, что-то же самое, любые две его точки можно соединить непрерывной линией, не выходящей за его пределы.

3. Односвязное. Понятие односвязности сложнее. Оно означает, что любую непрерывную замкнутую кривую, расположенную целиком в пределах данного многообразия, можно плавно стянуть в точку, не покидая этого многообразия. Например, обычная двумерная сфера в R 3 односвязна (кольцевую резинку, как угодно приложенную к поверхности яблока, можно плавной деформацией стянуть в одну точку, не отрывая резинки от яблока). С другой стороны, окружность и тор неодносвязны.

4. Компактное. Многообразие компактно, если любой его гомео-морфный образ имеет ограниченные размеры. Например, открытый интервал на прямой (все точки отрезка, кроме его концов) некомпактен, так как его можно непрерывно растянуть до бесконечной прямой. А вот замкнутый отрезок (с концами) является компактным многообразием с краем: при любой непрерывной деформации концы переходят в какие-то определенные точки, и весь отрезок обязан переходить в ограниченную кривую, соединяющую эти точки.

Размерность многообразия -это число степеней свободы у точки, которая на нем «живет». У каждой точки есть окрестность в виде диска соответствующей размерности, т. е. интервала прямой в одномерном случае, круга на плоскости в двумерном, шара в трехмерном и т. д. Одномерных связных многообразий без края с точки зрения топологии всего два: это прямая и окружность. Из них только окружность компактна.

Примером пространства, не являющегося многообразием, может служить, например, пара пересекающихся линий — ведь у точки пересечения двух линий любая окрестность имеет форму креста, у нее нет окрестности, которая была бы сама по себе просто интервалом (а у всех других точек такие окрестности есть). Математики в таких случаях говорят, что мы имеем дело с особым многообразием, у которого есть одна особая точка.

Двумерные компактные многообразия хорошо известны. Если рассматривать только ориентируемые 1 многообразия без края, то они с топологической точки зрения составляют простой, хотя и бесконечный, список: и так далее. Каждое такое многообразие получается из сферы приклеиванием нескольких ручек, число которых называется родом поверхности.

1 За неимением места, я не буду говорить о неориентируемых многообразиях, примером которых может служить известная бутылка Клейна — поверхность, которую нельзя вложить в пространство без самопересечений.


На рисунке изображены поверхности рода 0, 1, 2 и 3. Чем выделяется сфера из всех поверхностей этого списка? Оказывается, односвязностью: на сфере любую замкнутую кривую можно стянуть в точку, а на любой другой поверхности всегда можно указать кривую, которую стянуть в точку по поверхности невозможно.

Любопытно, что и трехмерные компактные многообразия без края можно в некотором смысле классифицировать, т. е. выстроить в некоторый список, хотя не такой прямолинейный, как в двумерном случае, а имеющий довольно сложную структуру. Тем не менее, трехмерная сфера S 3 выделяется в этом списке точно так же, как двумерная сфера в списке, приведенном выше. Тот факт, что любая кривая на S 3 стягивается в точку, доказывается столь же просто, как и в двумерном случае. А вот обратное утверждение, а именно, что это свойство уникально именно для сферы, т. е. что на любом другом трехмерном многообразии есть нестягиваемые кривые, очень трудное и в точности составляет содержание гипотезы Пуанкаре, о которой мы ведем речь.

Важно понимать, что многообразие может жить само по себе, о нем можно мыслить как о независимом объекте, никуда не вложенном. (Представьте себе жизнь двумерных существ на поверхности обычной сферы, не подозревающих о существовании третьего измерения.) К счастью, все двумерные поверхности из приведенного выше списка можно вложить в обычное пространство R 3 , что облегчает их визуализацию. Для трехмерной сферы S 3 (и вообще для любого компактного трехмерного многообразия без края) это уже не так, поэтому необходимы некоторые усилия для того, чтобы понять ее строение.

По-видимому, простейший способ объяснить топологическое устройство трехмерной сферы S 3 — это при помощи одноточечной компактифика-ции. А именно, трехмерная сфера S 3 представляет собой одноточечную компактификацию обычного трехмерного (неограниченного) пространства R 3 .

Поясним эту конструкцию сначала на простых примерах. Возьмем обычную бесконечную прямую (одномерный аналог пространства) и добавим к ней одну «бесконечно удаленную» точку, считая, что при движении по прямой вправо или влево мы в конце концов попадаем в эту точку. С топологической точки зрения нет разницы между бесконечной прямой и ограниченным открытым отрезком (без концевых точек). Такой отрезок можно непрерывно изогнуть в виде дуги, свести поближе концы и вклеить в место стыка недостающую точку. Мы получим, очевидно, окружность — одномерный аналог сферы.

Подобным же образом, если я возьму бесконечную плоскость и добавлю одну точку на бесконечности, к которой стремятся все прямые исходной плоскости, проходимые в любом направлении, то мы получим двумерную (обычную) сферу S 2 . Эту процедуру можно наблюдать при помощи стереографической проекции, которая каждой точке P сферы, за исключением северного полюса N, ставит в соответствие некоторую точку плоскости P":

Таким образом, сфера без одной точки — это топологически все равно, что плоскость, а добавление точки превращает плоскость в сферу.

В принципе, точно такая же конструкция применима и к трехмерной сфере и трехмерному пространству, только для ее осуществления необходим выход в четвертое измерение, и на чертеже это не так просто изобразить. Поэтому я ограничусь словесным описанием одноточечной компактификации пространства R 3 .

Представьте себе, что к нашему физическому пространству (которое мы, вслед за Ньютоном, считаем неограниченным евклидовым пространством с тремя координатами x, y, z) добавлена одна точка «на бесконечности» таким образом, что при движении по прямой в любом направлении вы в нее попадаете (т.е. каждая пространственная прямая замыкается в окружность). Тогда мы получим компактное трехмерное многообразие, которое и есть по определению сфера S 3 .

Легко понять, что сфера S 3 односвязна. В самом деле, любую замкнутую кривую на этой сфере можно немного сдвинуть, чтобы она не проходила через добавленную точку. Тогда мы получим кривую в обычном пространстве R 3 , которая легко стягивается в точку посредством гомотетий, т. е. непрерывного сжатия по всем трем направлениям.

Для понимания, как устроено многообразие S 3 , весьма поучительно рассмотреть его разбиение на два полнотория. Если из пространства R 3 выбросить полноторие, то останется нечто не очень понятное. А если пространство компактифицировать в сферу, то это дополнение превращается тоже в полноторие. То есть сфера S 3 разбивается на два полнотория, имеющих общую границу — тор.

Вот как это можно понять. Вложим тор в R 3 как обычно, в виде круглого бублика, и проведем вертикальную прямую — ось вращения этого бублика. Через ось проведем произвольную плоскость, она пересечет наше полноторие по двум кругам, показанным на рисунке зеленым цветом, а дополнительная часть плоскости разбивается на непрерывное семейство красных окружностей. К их числу относится и центральная ось, выделенная более жирно, потому что в сфере S 3 прямая замыкается в окружность. Трехмерная картина получается из этой двумерной вращением вокруг оси. Полный набор повернутых окружностей заполнит при этом трехмерное тело, гомео-морфное полноторию, только выглядящее необычно.

В самом деле, центральная ось будет в нем осевой окружностью, а остальные будут играть роль параллелей — окружностей, составляющих обычное полноторие.

Чтобы было с чем сравнивать 3-сферу, я приведу еще один пример компактного 3-многообразия, а именно трехмерный тор. Трехмерный тор можно построить следующим образом. Возьмем в качестве исходного материала обычный трехмерный куб:

В нем имеется три пары граней: левая и правая, верхняя и нижняя, передняя и задняя. В каждой паре параллельных граней отождествим попарно точки, получающиеся друг из друга переносом вдоль ребра куба. То есть будем считать (чисто абстрактно, без применения физических деформаций), что, например, A и A" - это одна и та же точка, а B и B" - тоже одна точка, но отличная от точки A. Все внутренние точки куба будем рассматривать как обычно. Сам по себе куб-это многообразие с краем, но после проделанных склеек край замыкается сам на себя и исчезает. В самом деле, окрестностями точек A и A" в кубе (они лежат на левой и правой заштрихованных гранях) служат половинки шаров, которые после склейки граней сливаются в целый шарик, служащий окрестностью соответствующей точки трехмерного тора.

Чтобы ощутить устройство 3-тора исходя из обыденных представлений о физическом пространстве, нужно выбрать три взаимно перпендикулярных направления: вперед, влево и вверх — и мысленно считать, как в фантастических рассказах, что при движении в любом из этих направлений достаточно долгое, но конечное время, мы вернемся в исходную точку, но с противоположного направления Это тоже «компактификация пространства», но не одноточечная, использованная раньше для построения сферы, а более сложная.

На трехмерном торе есть нестягиваемые пути; например, таковым является отрезок AA" на рисунке (на торе он изображает замкнутый путь). Его нельзя стянуть, потому что при любой непрерывной деформации точки A и A" обязаны двигаться по своим граням, оставаясь строго друг напротив друга (иначе кривая разомкнется).

Итак, мы видим, что бывают односвязные и неодносвязные компактные 3-многообразия. Перельман доказал, что односвязное многообразие ровно одно.

Исходной идеей доказательства является использование так называемого «потока Риччи»: мы берем односвязное компактное 3-многообразие, наделяем его произвольной геометрией (т.е. вводим некоторую метрику с расстояниями и углами), а затем рассматриваем его эволюцию вдоль потока Риччи. Ричард Гамильтон, который высказал эту идею в 1981 году, надеялся, что при такой эволюции наше многообразие превратится в сферу. Оказалось, что это неверно, — в трехмерном случае поток Риччи способен портить многообразие, т. е. делать из него немногообразие (нечто с особыми точками, как в приведенном выше примере пересекающихся прямых). Перельману путем преодоления неимоверных технических трудностей, с использованием тяжелого аппарата уравнений с частными производными, удалось внести поправки в поток Риччи вблизи особых точек таким образом, что при эволюции топология многообразия не меняется, особых точек не возникает, а в конце концов оно превращается в круглую сферу. Но нужно объяснить наконец, что же такое этот поток Риччи. Потоки, использованные Гамильтоном и Перельманом, относятся к изменению внутренней метрики на абстрактном многообразии, и это объяснить довольно трудно, поэтому я ограничусь описанием «внешнего» потока Риччи на одномерных многообразиях, вложенных в плоскость.

Представим себе гладкую замкнутую кривую на евклидовой плоскости, выберем на ней направление и рассмотрим в каждой точке касательный вектор единичной длины. Тогда при обходе кривой в выбранном направлении этот вектор будет поворачиваться с какой-то угловой скоростью, которая называется кривизной. В тех местах, где кривая изогнута круче, кривизна (по абсолютной величине) будет больше, а там, где она более плавная, кривизна будет меньше.

Кривизну будем считать положительной, если вектор скорости поворачивает в сторону внутренней части плоскости, разбитой нашей кривой на две части, и отрицательной, если он поворачивает вовне. Это соглашение на зависит от направления обхода кривой. В точках перегиба, где вращение меняет направление, кривизна будет равна 0. Например, окружность радиуса 1 имеет постоянную положительную кривизну, равную 1 (если считать ее в радианах).

Теперь забудем про касательные векторы и к каждой точке кривой прикрепим, наоборот, перпендикулярный ей вектор, по длине равный кривизне в данной точке и направленный вовнутрь, если кривизна положительна, и вовне, если отрицательна, а затем заставим каждую точку двигаться в направлении соответствующего вектора со скоростью, пропорциональной его длине. Вот пример:

Оказывается, что любая замкнутая кривая на плоскости ведет себя при такой эволюции подобным же образом, т. е. превращается в конце концов в окружность. Это и есть доказательство одномерного аналога гипотезы Пуанкаре при помощи потока Риччи (впрочем, само утверждение в данном случае и так очевидно, просто способ доказательства иллюстрирует, что происходит в размерности 3).

Заметим в заключение, что рассуждение Перельмана доказывает не только гипотезу Пуанкаре, но и гораздо более общую гипотезу геометризации Тёрстона, которая в известном смысле описывает устройство всех вообще компактных трехмерных многообразий. Но этот предмет лежит уже за рамками настоящей элементарной статьи.

Сергей Дужин,
докт.физ.-мат. наук,
старший научный сотрудник
Санкт-Петербургского отделения
Математического института РАН

В 1904 г. Анри Пуанкаре предположил, что любой трехмерный объект, обладающий определенными свойствами трехмерной сферы, можно преобразовать в 3-сферу. На доказательство этой гипотезы ушло 99 лет. (Внимание! Трехмерная сфера – это не то, о чем вы подумали.) Российский математик доказал высказанную сто лет назад гипотезу Пуанкаре и завершил создание каталога форм трехмерных пространств. Возможно, он получит премию в $1 млн.

Оглянитесь вокруг. Окружающие вас предметы, как и вы сами, представляют собой набор частиц, перемещающихся в трехмерном пространстве (3-многообразии), которое простирается во всех направлениях на многие миллиарды световых лет.

Многообразия – это математические построения. Со времен Галилея и Кеплера ученые успешно описывают действительность в терминах той или иной ветви математики. Физики считают, что все на свете происходит в трехмерном пространстве и положение любой частицы можно задать тремя числами, например, широтой, долготой и высотой (оставим пока в стороне высказанное в теории струн предположение о том, что помимо трех наблюдаемых нами измерений существуют еще несколько дополнительных).

Согласно классической и традиционной квантовой физике, пространство фиксировано и неизменно. В то же время общая теория относительности рассматривает его как активного участника событий: расстояние между двумя точками зависит от проходящих гравитационных волн и от того, сколько вещества и энергии расположено вблизи. Но и в ньютоновской, и в эйнштейновской физике пространство – бесконечное или конечное – в любом случае представляет собой 3-многообразие. Поэтому для полного понимания основ, на которые опирается почти вся современная наука, необходимо разобраться в свойствах 3-многообразий (не меньший интерес вызывают 4-многообразия, так как пространство и время вместе образуют одно из них).

Раздел математики, в котором изучаются многообразия, называется топологией. Топологи прежде всего задались фундаментальными вопросами: каков самый простой (т.е. характеризующийся наименее сложной структурой) тип 3-многообразия? Есть ли у него столь же простые собратья или же он уникален? Какие вообще бывают 3-многообразия?

Ответ на первый вопрос известен давно: самым простым компактным 3-многообразием является пространство, называемое 3-сферой (Некомпактные многообразия бесконечны или имеют края. Далее рассматриваются только компактные многообразия). Два других вопроса оставались открытыми на протяжении столетия. Лишь в 2002 г. на них ответил российский математик Григорий Перельман, который, судя по всему, сумел доказать гипотезу Пуанкаре.

Ровно сто лет назад французский математик Анри Пуанкаре предположил, что 3-сфера уникальна и никакое другое компактное 3-многообразие не обладает теми свойствами, которые делают ее столь простой. У более сложных 3-многообразий есть границы, встающие как кирпичная стена, или множественные связи между некоторыми областями, похожие на лесную тропинку, которая то разветвляется, то снова соединяется. Любой трехмерный объект со свойствами 3-сферы можно преобразовать в нее саму, поэтому для топологов он представляется просто ее копией. Доказательство Перельмана также позволяет ответить на третий вопрос и провести классификацию всех существующих 3-многообразий.

Вам потребуется изрядное воображение, чтобы представить себе 3-сферу (см. МНОГОМЕРНАЯ МУЗЫКА СФЕР). К счастью, у нее много общего с 2-сферой, типичный пример которой – резина круглого воздушного шарика: она двухмерна, поскольку любая точка на ней задается всего двумя координатами – широтой и долготой. Если рассмотреть достаточно маленький ее участок под мощной лупой, то он покажется кусочком плоского листа. Крошечному насекомому, ползающему по воздушному шарику, он будет казаться плоской поверхностью. Но если козявка будет достаточно долго двигаться по прямой, то в конечном счете вернется в точку отправления. Точно так же 3-сферу размером с нашу Вселенную мы бы воспринимали как «обычное» трехмерное пространство. Пролетев достаточно далеко в любом направлении, мы бы в конце концов совершили «кругосветное путешествие» по ней и оказались бы в исходной точке.

Как вы уже догадались, n-мерная сфера называется n-сферой. Например, 1-сфера всем знакома: это просто окружность.

Григорий Перельман излагает свое доказательство гипотезы Пуанкаре и завершение программы Терстона по геометризации на семинаре в Принстонском университете в апреле 2003 г.

Проверка гипотез

Прошла половина столетия, прежде чем дело о гипотезе Пуанкаре сдвинулось с мертвой точки. В 60-х гг. XX в. математики доказали аналогичные ей утверждения для сфер пяти и более измерений. В каждом случае n-сфера действительно является единственным и простейшим n-многообразием. Как ни странно, получить результат для многомерных сфер оказалось легче, чем для 3- и 4-сферы. Доказательство для четырех измерений появилось в 1982 г. И только исходная гипотеза Пуанкаре о 3-сфере оставалась неподтвержденной.

Решающий шаг был сделан в ноябре 2002 г., когда Григорий Перельман, математик из Санкт-Петербургского отделения математического института им. Стеклова, отправил статью на сайт www.arxiv.org, где физики и математики со всего мира обсуждают результаты своей научной деятельности. Топологи сразу уловили связь работы российского ученого с гипотезой Пуанкаре, хотя напрямую автор ее не упомянул. В марте 2003 г. Перельман опубликовал вторую статью и весной того же года посетил США и провел несколько семинаров в Массачусетском технологическом институте и в Университете штата Нью-Йорк в Стоуни-Брук. Несколько групп математиков в ведущих институтах тут же занялись детальным изучением представленных работ и поиском ошибок.

ОБЗОР: ДОКАЗАТЕЛЬСТВО ГИПОТЕЗЫ ПУАНКАРЕ

  • Целое столетие математики пытались доказать предположение Анри Пуанкаре об исключительной простоте и уникальности 3-сферы среди всех трехмерных объектов.
  • Обоснование гипотезы Пуанкаре наконец появилось в работе молодого российского математика Григория Перельмана. Он также завершил обширную программу классификации трехмерных многообразий.
  • Возможно, наша Вселенная имеет форму 3-сферы. Есть и другие интригующие связи математики с физикой элементарных частиц и общей теорией относительности.

В Стоуни-Брук за две недели Перельман прочитал несколько лекций, выступая от трех до шести часов в день. Он очень четко изложил материал и ответил на все возникшие вопросы. До получения окончательного результата остался еще один незначительный шаг, но нет никаких сомнений в том, что он вот-вот будет сделан. Первая статья знакомит читателя с основополагающими идеями и считается полностью проверенной. Во второй статье освещаются прикладные вопросы и технические нюансы; она пока еще не вызывает такого же полного доверия, как ее предшественница.

В 2000 г. Институт математики им. Клея в Кембридже, штат Массачусетс, учредил премию в размере $1 млн. за доказательство каждой из семи «Проблем тысячелетия», одной из которых считается гипотеза Пуанкаре. Прежде чем ученый сможет претендовать на приз, его доказательство должно быть опубликовано и в течение двух лет тщательно проверено.

Работа Перельмана расширяет и завершает программу исследований, проведенных в 90-х гг. прошлого века Ричардом Гамильтоном (Richard S. Hamilton) из Колумбийского университета. В конце 2003 г. труды американского математика были отмечены премией Института Клея. Перельману удалось блестяще преодолеть целый ряд препятствий, с которыми не смог справиться Гамильтон.

На самом деле доказательство Перельмана, правильность которого еще никому не удалось поставить под сомнение, решает гораздо более широкий круг вопросов, чем собственно гипотеза Пуанкаре. Предложенная Уильямом Терстоном (William P. Thurston) из Корнеллского университета процедура геометризации позволяет провести полную классификацию 3-многообразий, в основу которой положена 3-сфера, уникальная в своей возвышенной простоте. Если бы гипотеза Пуанкаре была ложной, т.е. существовало бы множество пространств столь же простых, как сфера, то классификация 3-многообразий превратилась бы в нечто бесконечно более сложное. Благодаря Перельману и Терстону у нас появился полный каталог всех допускаемых математикой форм трехмерного пространства, которые могла бы принять наша Вселенная (если рассматривать только пространство без времени).

Резиновые бублики

Чтобы глубже понять гипотезу Пуанкаре и доказательство Перельмана, следует поближе познакомиться с топологией. В этом разделе математики форма объекта не имеет значения, как будто он сделан из теста, которое можно как угодно растягивать, сжимать и изгибать. Зачем же нам задумываться о вещах или пространствах из воображаемого теста? Дело в том, что точная форма объекта – расстояние между всеми его точками – относится к структурному уровню, который называют геометрией. Рассматривая объект из теста, топологи выявляют его фундаментальные свойства, не зависящие от геометрической структуры. Изучение топологии похоже на поиск наиболее общих черт, присущих людям, методом рассмотрения «пластилинового человека», которого можно превратить в любого конкретного индивида.

В популярной литературе часто встречается избитое утверждение, что с точки зрения топологии чашка ничем не отличается от бублика. Дело в том, что чашку из теста можно превратить в бублик, просто сминая материал, т.е. ничего не слепляя и не проделывая отверстий (см. ТОПОЛОГИЯ ПОВЕРХНОСТЕЙ). С другой стороны, чтобы сделать бублик из шара, в нем непременно нужно сделать дырку или раскатать его в цилиндр и слепить концы, поэтому шар – это совсем не бублик.

Топологов больше всего интересуют поверхности шара и бублика. Поэтому вместо сплошных тел следует представлять себе воздушные шарики. Их топология по-прежнему различна, поскольку сферический воздушный шарик невозможно преобразовать в кольцевой, который называется тором. Сначала ученые решили разобраться, сколько вообще существует объектов с различной топологией и как их можно охарактеризовать. Для 2-многообразий, которые мы привыкли называть поверхностями, ответ изящен и прост: все определяется количеством «дырок» или, что то же самое, количеством ручек (см. ТОПОЛОГИЯ ПОВЕРХНОСТЕЙ).К концу XIX в. математики поняли, как классифицировать поверхности, и установили, что самая простая из них – сфера. Естественно, топологи начали задумываться о трехмерных многообразиях: уникальна ли 3-сфера в своей простоте? Вековая история поисков ответа полна неверных шагов и ошибочных доказательств.

Анри Пуанкаре вплотную занялся этим вопросом. Он был одним из двух сильнейших математиков начала XX в. (другим был Давид Гильберт). Его называли последним универсалом – он успешно работал во всех разделах как чистой, так и прикладной математики. Кроме того, Пуанкаре внес огромный вклад в развитие небесной механики, теорию электромагнетизма, а также в философию науки, о которой написал несколько популярных книг.

Пуанкаре стал основателем алгебраической топологии и, используя ее методы, в 1900 г. сформулировал топологическую характеристику объекта, названную гомотопией. Чтобы определить гомотопию многообразия, нужно мысленно погрузить в него замкнутую петлю (см. ТОПОЛОГИЯ ПОВЕРХНОСТЕЙ). Затем следует выяснить, всегда ли можно стянуть петлю в точку, перемещая ее внутри многообразия. Для тора ответ будет отрицательным: если расположить петлю по окружности тора, то стянуть ее в точку не удастся, т.к. будет мешать «дырка» бублика. Гомотопия – это количество различных путей, которые могут воспрепятствовать стягиванию петли.

МНОГОМЕРНАЯ МУЗЫКА СФЕР

Не так-то просто представить себе 3-сферу. Математикам, доказывающим теоремы о многомерных пространствах, не приходится воображать себе объект изучения: они обращаются с абстрактными свойствами, руководствуясь интуитивными представлениями, основанными на аналогиях с меньшим числом измерений (к таким аналогиям нужно относиться с осторожностью и не принимать их буквально). Мы тоже будем рассматривать 3-сферу, исходя из свойств объектов с меньшим числом измерений.

1. Начнем с рассмотрения круга и ограничивающей его окружности. Для математиков круг – это двумерный шар, а окружность – одномерная сфера. Далее, шар любой размерности – это заполненный объект, напоминающий арбуз, а сфера – это его поверхность, больше похожая на воздушный шарик. Окружность одномерна, потому что положение точки на ней можно задать одним числом.

2. Из двух кругов мы можем построить двумерную сферу, превратив один из них в Северное полушарие, а другой – в Южное. Осталось склеить их, и 2-сфера готова.

3. Представим себе муравья, ползущего с Северного полюса по большому кругу, образованному нулевым и 180-м меридианом (слева). Если мы отобразим его путь на два исходных круга (справа), то увидим, что насекомое движется по прямой линии (1) к краю северного круга (а), затем пересекает границу, попадает в соответствующую точку на южном круге и продолжает следовать по прямой линии (2 и 3). Затем муравей снова достигает края (b), переходит его и снова оказывается на северном круге, устремляясь к исходной точке – Северному полюсу (4). Заметьте, что во время кругосветного путешествия по 2-сфере направление движения сменяется на противоположное при переходе с одного круга на другой.

4. Теперь рассмотрим нашу 2-сферу и содержащийся в ней объем (трехмерный шар) и сделаем с ними то же самое, что с окружностью и кругом: возьмем две копии шара и склеим их границы вместе. Наглядно показать, как шары искажаются в четырех измерениях и превращаются в аналог полушарий, невозможно, да и не нужно. Достаточно знать, что соответствующие точки на поверхностях, т.е. 2-сферах, соединены между собой так же, как в случае с окружностями. Результат соединения двух шаров представляет собой 3-сферу – поверхность четырехмерного шара. (В четырех измерениях, где существуют 3-сфера и 4-шар, поверхность объекта трехмерна.) Назовем один шар северным полушарием, а другой – южным. По аналогии с кругами, полюса теперь находятся в центрах шаров.

5. Вообразите, что рассмотренные шары – большие пустые области пространства. Допустим, из Северного полюса отправляется космонавт на ракете. Со временем он достигает экватора (1), которым теперь является сфера, окружающая северный шар. Пересекая ее, ракета попадает в южное полушарие и движется по прямой линии через его центр – Южный полюс – к противоположной стороне экватора (2 и 3). Там снова происходит переход в северное полушарие, и путешественник возвращается в Северный полюс, т.е. в исходную точку (4). Таков сценарий кругосветного путешествия по поверхности 4-мерного шара! Рассмотренная трехмерная сфера и есть то пространство, о котором идет речь в гипотезе Пуанкаре. Возможно, наша Вселенная представляет собой именно 3-сферу.
Рассуждения можно распространить на пять измерений и построить 4-сферу, но вообразить это чрезвычайно сложно. Если склеить два n-шара по окружающим их (n–1)-сферам, то получится n-сфера, ограничивающая (n+1)-шар.

На n-сфере любую, даже замысловато закрученную петлю всегда можно распутать и стянуть в точку. (Петле разрешается проходить через саму себя.) Пуанкаре предполагал, что 3-сфера – единственное 3-многообразие, на котором в точку можно стянуть любую петлю. К сожалению, он так и не смог доказать свое предположение, которое впоследствии стали называть гипотезой Пуанкаре. За прошедшие сто лет многие предлагали свой вариант доказательства, но лишь для того, чтобы убедиться в его ошибочности. (Для простоты изложения я пренебрегаю двумя особыми случаями: так называемыми неориентируемыми многообразиями и многообразиями с краями. Например, у сферы с вырезанным из нее сегментом есть край, а петля Мебиуса не только имеет края, но также является неориентируемой.)

Геометризация

Проведенный Перельманом анализ 3-многообразий тесно связан с процедурой геометризации. Геометрия имеет дело с фактической формой объектов и многообразий, сделанных уже не из теста, а из керамики. Например, чашка и бублик геометрически различны, поскольку их поверхности изогнуты по-разному. Говорят, что чашка и бублик – два примера топологического тора, которому приданы разные геометрические формы.

Чтобы понять, зачем Перельман использовал геометризацию, рассмотрим классификацию 2-многообразий. Каждой топологической поверхности назначена уникальная геометрия, искривление которой распределено по многообразию равномерно. Например, для сферы – это идеально сферическая поверхность. Другая возможная геометрия для топологической сферы – яйцо, но его кривизна не везде распределена равномерно: острый конец изогнут сильнее, чем тупой.

2-многообразия образуют три геометрических типа (см. ГЕОМЕТРИЗАЦИЯ). Сфера характеризуется положительной кривизной. Геометризированный тор – плоский, ему свойственна нулевая кривизна. Все остальные 2-многообразия с двумя или более «дырками» имеют отрицательную кривизну. Им соответствует поверхность, похожая на седло, которое спереди и сзади изгибается вверх, а слева и справа –вниз. Такую геометрическую классификацию (геометризацию) 2-многообразий Пуанкаре разработал вместе с Паулем Кебе (Paul Koebe) и Феликсом Клейном (Felix Klein), именем которого названа бутылка Клейна.

Возникает естественное желание применить подобный метод к 3-многообразиям. Можно ли найти для каждого из них такую уникальную конфигурацию, у которой кривизна была бы распределена равномерно по всему многообразию?

Оказалось, что 3-многообразия гораздо сложнее своих двумерных собратьев и большинству из них нельзя поставить в соответствие однородную геометрию. Их следует разделять на части, которым соответствует одна из восьми канонических геометрий. Данная процедура напоминает разложение числа на простые множители.

ТОПОЛОГИЯ ПОВЕРХНОСТЕЙ

В ТОПОЛОГИИ точная форма, т.е. геометрия, не имеет значения: объекты рассматриваются так, как будто они сделаны из теста и их можно растягивать, сжимать и перекручивать. Однако резать и склеивать ничего нельзя. Таким образом, любой объект с одним отверстием, например, кофейная чашка (слева), эквивалентен бублику или тору (справа).

ЛЮБОЕ ДВУМЕРНОЕ многообразие или поверхность (ограничиваясь компактными ориентируемыми объектами) можно изготовить, добавляя к сфере (a) ручки. Прилепим одну – сделаем поверхность 1 рода, т.е. тор или бублик (вверху справа), добавим вторую – получим поверхность 2 рода (b) и т.д.

УНИКАЛЬНОСТЬ 2-сферы среди поверхностей заключается в том, что любую вложенную в нее замкнутую петлю можно стянуть в точку (a). На торе этому может препятствовать среднее отверстие (b). У любой поверхности, кроме 2-сферы, есть ручки, препятствующие стягиванию петли. Пуанкаре предположил, что 3-сфера уникальна среди трехмерных многообразий: только на ней любую петлю можно стянуть в точку.

Такая процедура классификации впервые была предложена Терстоном в конце 70-х гг. прошлого века. Вместе с коллегами он обосновал большую ее часть, но доказательство некоторых ключевых моментов (включая гипотезу Пуанкаре) оказалось им не под силу. Уникальна ли 3-сфера? Достоверный ответ на этот вопрос впервые появился в статьях Перельмана.

Каким же образом можно геометризировать многообразие и придать ему повсюду равномерное искривление? Нужно взять некую произвольную геометрию с различными выступами и углублениями, а затем сгладить все неровности. В начале 90-х гг. XX в. к анализу 3-многообразий приступил Гамильтон, который воспользовался уравнением потока Риччи, названным так в честь математика Грегорио Риччи-Курбастро (Gregorio Ricci-Curbastro). Оно в чем-то схоже с уравнением теплопроводности, которое описывает тепловые потоки, протекающие в неравномерно нагретом теле до тех пор, пока его температура не станет везде одинаковой. Точно так же уравнение потока Риччи задает такое изменение кривизны многообразия, которое ведет к выравниванию всех выступов и углублений. Например, если начать с яйца, то оно постепенно станет сферическим.

ГЕОМЕТРИЗАЦИЯ

ДЛЯ КЛАССИФИКАЦИИ 2-многообразий можно воспользоваться униформизацией или геометризацией: поставить им в соответствие определенную геометрию, жесткую форму. В частности, каждое многообразие можно преобразовать так, что его кривизна будет распределена равномерно. Сфера (a) – уникальная форма с постоянной положительной кривизной: она всюду изогнута как вершина холма. Тор (b) можно сделать плоским, т.е. всюду имеющим нулевую кривизну. Для этого его нужно разрезать и выпрямить. Полученный цилиндр следует разрезать вдоль и развернуть, чтобы получилась прямоугольная плоскость. Иными словами, тор можно отобразить на плоскость. Поверхностям 2 рода и выше (c) можно придать постоянную отрицательную кривизну, при этом их геометрия будет зависеть от количества ручек. Ниже изображена седлообразная поверхность с постоянной отрицательной кривизной.

КЛАССИФИЦИРОВАТЬ 3-МНОГООБРАЗИЯ гораздо сложнее. 3-многообразие приходится разделять на части, каждую из которых можно преобразовать в одну из восьми канонических трехмерных геометрий. Приведенный ниже пример (для простоты изображенный в виде 2-многообразия синего цвета) составлен из 3-геометрий с постоянной положительной (a), нулевой (b) и постоянной отрицательной (c) кривизной, а также из «произведений» 2-сферы и окружности (d) и поверхности с отрицательной кривизной и окружности (e).

Однако Гамильтон столкнулся с определенными трудностями: в некоторых случаях поток Риччи приводит к пережиму многообразия и образованию бесконечно тонкой шейки. (В этом его отличие от теплового потока: в точках пережима температура была бы бесконечно большой.) Один из примеров – многообразие в форме гантели. Сферы растут, втягивая материал из перемычки, которая в середине сужается в точку (см. БОРЬБА С ОСОБЕННОСТЯМИ). В другом случае, когда из многообразия выступает тонкий стержень, поток Риччи вызывает появление так называемой сигарообразной особенности. В правильном 3-многообразии окрестность любой точки является кусочком обычного трехмерного пространства, чего нельзя сказать о сингулярных точках пережима. Преодолеть это затруднение помогли работы российского математика.

В 1992 г. после защиты кандидатской диссертации Перельман прибыл в США и провел несколько семестров в университете штата Нью-Йорк в Стоуни-Брук, а затем два года в Калифорнийском университете в Беркли. Он быстро заслужил репутацию восходящей звезды, получив несколько важных и глубоких результатов в одном из разделов геометрии. Перельман был удостоен премии Европейского математического общества (от которой он отказался) и получил престижное приглашение выступить на Международном конгрессе математиков (которое он принял).

Весной 1995 г. ему были предложены должности в нескольких знаменитых математических учреждениях, но он предпочел вернуться в родной Санкт-Петербург и по существу исчез из поля зрения. На протяжении многих лет единственным признаком его деятельности были письма прежним коллегам с указанием ошибок, допущенных в опубликованных ими статьях. Запросы о состоянии его собственных работ оставались без ответа. И вот в конце 2002 г. несколько человек получили от Перельмана электронное письмо, сообщавшее о статье, которую он отправил на математический сервер. Так началось его наступление на гипотезу Пуанкаре.

БОРЬБА С ОСОБЕННОСТЯМИ

ПЫТАЯСЬ ИСПОЛЬЗОВАТЬ уравнение потока Риччи для доказательства гипотезы Пуанкаре и геометризации 3-многообразий, ученые столкнулись с трудностями, которые сумел преодолеть Григорий Перельман. Применение потока Риччи для постепенного изменения формы 3-многообразия иногда приводит к возникновению особенностей. Например, когда часть объекта имеет форму гантели (a), трубка между сферами может оказаться пережатой до точечного сечения, нарушающего свойства многообразия (b). Также не исключено появление так называемой сигарообразной особенности.

ПЕРЕЛЬМАН ПОКАЗАЛ , что над особенностями можно проводить «хирургические операции». Когда многообразие начинает пережиматься, следует вырезать небольшие участки по обе стороны от точки сужения (c), места среза закрыть небольшими сферами, а затем снова использовать поток Риччи (d). Если пережим возникает снова, процедуру нужно повторить. Перельман также доказал, что сигарообразная особенность никогда не появляется.

Перельман добавил к уравнению потока Риччи новый член. Внесенное изменение не устранило проблему особенностей, но позволило провести гораздо более глубокий анализ. Российский ученый показал, что над многообразием в виде гантели можно провести «хирургическую» операцию: отрезать тонкую трубку по обе стороны от появляющегося пережима и заделать торчащие из шаров открытые трубки сферическими колпачками. Затем следует продолжать изменение «прооперированного» многообразия в соответствии с уравнением потока Риччи, а ко всем возникающим пережимам применять вышеописанную процедуру. Перельман также показал, что сигарообразные особенности появляться не могут. Таким образом, любое 3-многообразие можно свести к набору частей с однородной геометрией.

Когда поток Риччи и «хирургическую операцию» применяют ко всем возможным 3-многообразиям, любое из них, если оно столь же простое, как 3-сфера (иначе говоря, характеризуется такой же гомотопией), обязательно сводится к той же самой однородной геометрии, что и 3-сфера. Значит, с топологической точки зрения, рассматриваемое многообразие и есть 3-сфера. Таким образом, 3-сфера уникальна.

Ценность статей Перельмана заключается не только в доказательстве гипотезы Пуанкаре, но и в новых методах анализа. Ученые всего мира уже используют в своих работах результаты, полученные российским математиком, и применяют разработанные им методы в других областях. Оказалось, что поток Риччи связан с так называемой группой перенормировки, которая определяет, как изменяется сила взаимодействий в зависимости от энергии столкновения частиц. Например, при низких энергиях сила электромагнитного взаимодействия характеризуется числом 0,0073 (приблизительно 1/137). Однако когда два электрона сталкиваются лоб в лоб при скорости, почти равной скорости света, значение этой силы приближается к 0,0078. Математика, описывающая изменение физических сил, очень похожа на математику, описывающую геометризацию многообразия.

Увеличение энергии столкновения эквивалентно изучению силы на меньших расстояниях. Поэтому группа перенормировки подобна микроскопу с изменяемым коэффициентом увеличения, который позволяет исследовать процесс на разных уровнях детализации. Точно так же поток Риччи представляет собой микроскоп для рассмотрения многообразий. Выступы и углубления, видимые при одном увеличении, исчезают при другом. Вполне вероятно, что в масштабах длины Планка (около $10^{–35}$ м) пространство, в котором мы живем, выглядит как пена со сложной топологической структурой (см. статью «Атомы пространства и времени», «В мире науки», №4, 2004 г.). Кроме того, уравнения общей теории относительности, которые описывают характеристики гравитации и крупномасштабной структуры Вселенной, тесно связаны с уравнением потока Риччи. Как это ни парадоксально, член, добавленный Перельманом к выражению, которое использовал Гамильтон, возникает в теории струн, претендующей на звание квантовой теории гравитации. Не исключено, что в статьях российского математика ученые найдут еще много полезной информации не только об абстрактных 3-многообразиях, но также и о пространстве, в котором мы живем.

Кандидат физико-математических наук Грэхем Коллинз (Graham P. Collins) работает редактором журнала Scientific American. Дополнительная информация о теореме Пуанкаре доступна на www.sciam.com/ontheweb.

ДОПОЛНИТЕЛЬНАЯ ЛИТЕРАТУРА:

  1. The Poincare Conjecture 99 Years Later: A Progress Report. John W. Milnor. February 2003. Available at www.math.sunysb.edu/~jack/PREPRINTS/poiproof.pdf
  2. Jules Henri Poincare ’ (biography). October 2003. Available atwww-groups.dcs.st-and.ac.uk/~history/Mathematicians/Poincare.html
  3. Millennium Problems. The Clay Mathematics Institute: www.claymath.org/millennium/
  4. Notes and commentary on Perelman’s Ricci flow papers. Compiled by Bruce Kleiner and John Lott. Available at www.math.lsa.umich.edu/research/ricciflow/perelman.html
  5. Topology. Eric W. Weisstein in Mathworld-A Wolfram Web Resource. Available at

"Зачем мне миллион?"

На весь мир известна история про гениального математика Григория Перельмана, доказавшего гипотезу Пуанкаре, который отказался от миллиона долларов. Недавно учёный-затворник объяснил, наконец, почему же он не взял заслуженную премию.

Началось всё с того, что журналист и продюсер кинокомпании «Президент-фильм» Александр Забровский догадался связаться с матерью Григория Яковлевича через еврейскую общину Петербурга. Ведь до этого все журналисты безрезультатно просиживали штаны на ступенях дома великого математика с целью взять у него интервью. Мать поговорила с сыном, дав журналисту хорошую характеристику, и только после этого Перельман согласился на встречу.

По словам Забровского, Григорий Яковлевич - вполне вменяемый и адекватный человек, а всё, что о нём говорили ранее - бред сивой кобылы. Он видит перед собой конкретную цель и знает, как к ней прийти.

Кинокомпания «Президент-фильм» с согласия Перельмана планирует снять о нем художественную ленту «Формула Вселенной». Математик и пошёл-то на контакт ради этого фильма, который будет не о нём, а о сотрудничестве и противоборстве трех основных мировых математических школ: российской, китайской и американской, наиболее продвинувшихся по стезе изучения и управления Вселенной. На вопрос о миллионе, который так волновал всех удивлённых и любопытных, Перельман ответил: «Я знаю, как управлять Вселенной. И скажите - зачем же мне бежать за миллионом?»

Учёный рассказал и про то, почему он не общается с журналистами. Причина в том, что их волнует не наука, а личная жизнь - стрижка ногтей и миллион. Его обижает, когда в прессе его называют Гришей, такую фамильярность математик считает неуважением к себе.

Со школьных лет Григорий Перельман привык «тренировать мозг», то есть решать задачи, которые заставляли мыслить абстрактно. И чтобы найти правильно решение, нужно было представить себе «кусочек мира». Например, математику предложили посчитать, с какой скоростью должен был идти Иисус Христос по воде, чтобы не провалиться. Оттуда и пошло желание Перельмана изучать свойства трехмерного пространства Вселенной.

Для чего же надо было столько лет биться над доказательством гипотезы Пуанкаре? Суть её такова: если трехмерная поверхность в чем-то похожа на сферу, то ее можно расправить в сферу. «Формулой Вселенной» утверждение Пуанкаре называют из-за его важности в изучении сложных физических процессов в теории мироздания и из-за того, что оно дает ответ на вопрос о форме Вселенной.

Григорий Яковлевич постиг таких сверхзнаний, которые помогают понять мироздание. И теперь математик постоянно под наблюдением российских и зарубежных спецслужб: а вдруг Перельман представляет угрозу для человечества? Ведь если с помощью его знаний можно свернуть Вселенную в точку, а потом ее развернуть, то мы можем погибнуть либо возродиться в ином качестве? И тогда мы ли это будем? И нужно ли нам вообще управлять Вселенной?

Доказательство длиною в век

Григорий Перельман окончательно и бесповоротно вошел в историю

Математический институт Клэя присудил Григорию Перельману Премию тысячелетия (Millennium Prize), тем самым официально признав верным доказательство гипотезы Пуанкаре, выполненное российским математиком. Примечательно, что при этом институту пришлось нарушить собственные правила - по ним на получение примерно миллиона долларов, именно таков размер премии, может претендовать только автор, опубликовавший свои работы в рецензируемых журналах. Работа Григория Перельмана формально так и не увидела свет - она осталась набором нескольких препринтов на сайте arXiv.org (один, два и три). Впрочем, не так важно, что стало причиной решения института - присуждение Премии тысячелетия ставит точку в истории длиной более чем в 100 лет.

Кружка, пончик и немного топологии

Прежде чем выяснить, в чем состоит гипотеза Пуанкаре, необходимо разобраться, что это за раздел математики - топология, - к которому эта самая гипотеза относится. Топология многообразий занимается свойствами поверхностей, которые не меняются при определенных деформациях. Поясним на классическом примере. Предположим, что перед читателем лежит пончик и стоит пустая чашка. С точки зрения геометрии и здравого смысла - это разные объекты хотя бы потому, что попить кофе из пончика не получится при всем желании.

Однако тополог скажет, что чашка и пончик - это одно и то же. И объяснит это так: вообразим, что чашка и пончик представляют собой полые внутри поверхности, изготовленные из очень эластичного материала (математик бы сказал, что имеется пара компактных двумерных многообразий). Проведем умозрительный эксперимент: сначала раздуем дно чашки, а потом ее ручку, после чего она превратится в тор (именно так математически называется форма пончика). Посмотреть, как примерно выглядит этот процесс можно.

Разумеется, у пытливого читателя возникает вопрос: раз поверхности можно мять, то как же их различать? Ведь, например, интуитивно понятно - как ни мни тор, без разрывов и склеек сферу из него не получишь. Тут в игру вступают так называемые инварианты - характеристики поверхности, которые не меняются при деформации, - понятие, необходимое для формулировки гипотезы Пуанкаре.

Здравый смысл подсказывает нам, что тор от сферы отличает дырка. Однако дырка - понятие далеко не математическое, поэтому его надо формализовать. Делается это так - представим, что на поверхности у нас имеется очень тонкая эластичная нить, образующая петлю (саму поверхность в этом умозрительном опыте, в отличие от предыдущего, считаем твердой). Будем двигать петлю, не отрывая ее от поверхности и не разрывая. Если нить можно стянуть до очень маленького кружочка (почти точки), то говорят, что петля стягиваема. В противном случае петля называется нестягиваемой.

Так вот, легко видеть, что на сфере любая петля стягиваема (как это примерно выглядит, можно посмотреть), а вот для тора это уже не так: на бублике есть целых две петли - одна продета в дырку, а другая обходит дырку "по периметру", - которые нельзя стянуть.

На этой картинке примеры нестягиваемых петель показаны красным и фиолетовым цветом соответственно. Когда на поверхности есть петли, математики говорят, что "фундаментальная группа многообразия нетривиальна", а если таких петель нет - то тривиальна.

Фундаментальная группа тора обозначается п1 (T2). Из-за того, что она нетривиальна, руки мыши образуют нестягиваемую петлю. Грусть на лице животного - результат осознания этого факта.



Так вот, легко видеть, что на сфере любая петля стягиваема, а вот для тора это уже не так: на бублике есть целых две петли - одна продета в дырку, а другая обходит дырку "по периметру", - которые нельзя стянуть. На этой картинке примеры нестягиваемых петель показаны красным и фиолетовым цветом соответственно.

Теперь, чтобы честно сформулировать гипотезу Пуанкаре, любознательному читателю осталось потерпеть еще немного: надо разобраться, что такое трехмерное многообразие в общем и трехмерная сфера в частности.

Вернемся на секундочку к поверхностям, которые мы обсуждали выше. Каждую из них можно разрезать на такие мелкие кусочки, что каждый будет почти напоминать кусочек плоскости. Так как у плоскости всего два измерения, то говорят, что и многообразие двумерно. Трехмерное многообразие - это такая поверхность, которую можно разрезать на мелкие кусочки, каждый из которых очень похож на кусочек обычного трехмерного пространства.

Главным "действующим лицом" гипотезы является трехмерная сфера. Представить себе трехмерную сферу как аналог обычной сферы в четырехмерном пространстве, не потеряв при этом рассудок, все-таки, наверное, невозможно. Однако описать этот объект, так сказать, "по частям" достаточно легко. Все, кто видел глобус, знают, что обычную сферу можно склеить из северного и южного полушария по экватору. Так вот, трехмерная сфера склеивается из двух шаров (северного и южного) по сфере, которая представляет собой аналог экватора.

На трехмерных многообразиях можно рассмотреть такие же петли, какие мы брали на обычных поверхностях. Так вот, гипотеза Пуанкаре утверждает: "Если фундаментальная группа трехмерного многообразия тривиальна, то оно гомеоморфно сфере". Непонятное словосочетание "гомеоморфно сфере" в переводе на неформальный язык означает, что поверхность можно продеформировать в сферу.

Немного истории



В 1887 году Пуанкаре представил работу на математический конкурс, посвященный 60-летию короля Швеции Оскара II. В ней обнаружилась ошибка, которая привела к появлению теории хаоса.

Вообще говоря, в математике можно сформулировать большое количество сложных утверждений. Однако что делает ту или иную гипотезу великой, отличает ее от остальных? Как это ни странно, но великую гипотезу отличает большое количество неправильных доказательств, в каждом из которых есть по великой ошибке - неточности, которая зачастую приводит к возникновению целого нового раздела математики.

Так, изначально Анри Пуанкаре, который отличался помимо всего прочего умением совершать гениальные ошибки, сформулировал гипотезу немного в другом виде, чем мы написали выше. Спустя некоторое время он привел контрпример к своему утверждению, который стал известен как гомологическая 3-сфера Пуанкаре, и в 1904 году сформулировал гипотезу уже в современном виде. Сферу, кстати, совсем недавно ученые приспособили в астрофизике - оказалось, что Вселенная вполне может оказаться гомологической 3-сферой Пуанкаре.

Надо сказать, что особого ажиотажа среди коллег-геометров гипотеза не вызвала. Так было до 1934 года, когда британский математик Джон Генри Уайтхед представил свой вариант доказательства гипотезы. Очень скоро, однако, он сам нашел в рассуждениях ошибку, которая позже привела к возникновению целой теории многообразий Уайтхеда.

После этого за гипотезой постепенно закрепилась слава крайне сложной задачи. Многие великие математики пытались взять ее приступом. Например, американский Эр Аш Бинг (R.H.Bing), математик, у которого (абсолютно официально) вместо имени в документах были записаны инициалы. Он предпринял несколько безуспешных попыток доказать гипотезу, сформулировав в ходе этого процесса собственное утверждение - так называемую "гипотезу о свойстве П" (Property P conjecture). Примечательно, что это утверждение, которое рассматривалось Бингом как промежуточное, оказалось чуть ли не сложнее доказательства самой гипотезы Пуанкаре.

Были среди ученых и люди, положившие жизнь на доказательство этого математического факта. Например, известный математик греческого происхождения Кристос Папакириакопоулос. В течение более десяти лет, Примечательно, что обобщение гипотезы Пуанкаре на многообразия размерности выше трех оказалось заметно проще оригинала - лишние размерности позволяли легче манипулировать многообразиями. Так, для n-мерных многообразий (при n не меньше 5) гипотеза была доказана Стивеном Смейлом в 1961 году. Для n = 4 гипотеза была доказана методом, совершенно отличным от смейловского, в 1982 году Майклом Фридманом. За свое доказательство последний получил Филдсовскую медаль - высшую награду для математиков. Работая в Принстоне, он безуспешно пытался доказать гипотезу. Он умер от рака в 1976 году. Примечательно, что обобщение гипотезы Пуанкаре на многообразия размерности выше трех оказалось заметно проще оригинала - лишние размерности позволяли легче манипулировать многообразиями. Так, для n-мерных многообразий (при n не меньше 5) гипотеза была доказана Стивеном Смейлом в 1961 году. Для n = 4 гипотеза была доказана методом, совершенно отличным от смейловского, в 1982 году Майклом Фридманом.
Описанные работы - это далеко не полный список попыток решения более чем столетней гипотезы. И хотя каждая из работ и привела к возникновению целого направления в математике и может считаться в этом смысле успешной и значимой, доказать гипотезу Пуанкаре окончательно удалось только россиянину Григорию Перельману.

Перельман и доказательство

В 1992 году Григорий Перельман, тогда сотрудник математического института им. Стеклова, попал на лекцию Ричарда Гамильтона. Американский математик рассказывал о потоках Риччи - новом инструменте для изучения гипотезы геометризации Терстона - факта, из которого гипотеза Пуанкаре получалась как простое следствие. Эти потоки, построенные в некотором смысле по аналогии с уравнениями теплопереноса, заставляли поверхности с течением времени деформироваться примерно так же, как в начале этой статьи мы деформировали двумерные поверхности. Оказалось, что в некоторых случаях результатом такой деформации оказывался объект, структуру которого легко понять. Основная трудность заключалась в том, что во время деформации возникали особенности с бесконечной кривизной, аналогичные в некотором смысле черным дырам в астрофизике.

После лекции Перельман подошел к Гамильтону. Позже он рассказывал, что Ричард его приятно удивил: "Он улыбался и был очень терпелив. Он даже рассказал мне несколько фактов, которые были опубликованы спустя лишь несколько лет. Он сделал это без колебаний. Его открытость и доброта поразили меня. Не могу сказать, что большинство современных математиков ведет себя так."

После поездки в США Перельман вернулся в Россию, где принялся трудиться над решением проблемы особенностей потоков Риччи и доказательством гипотезы геометризации (а вовсе не над гипотезой Пуанкаре) втайне от всех. Ничего удивительного, что появление 11 ноября 2002 года первого препринта Перельмана повергло математическую общественность в шок. Спустя некоторое время появилась еще пара работ.

После этого Перельман самоустранился от обсуждения доказательств и даже, говорят, прекратил заниматься математикой. Он не прервал своего уединенного образа жизни даже в 2006 году, когда ему была присуждена Филдсовская премия - самая престижная награда для математиков. Причины такого поведения автора обсуждать не имеет смысла - гений имеет право вести себя странно (например, будучи в Америке Перельман не стриг ногти, позволяя им свободно расти).

Как бы то ни было, доказательство Перельмана зажило
отдельной от него жизнью: три препринта не давали покоя математикам современности. Первые результаты проверки идей российского математика появились в 2006 году - крупные геометры Брюс Кляйнер и Джон Лотт из Мичиганского университета опубликовали препринт собственной работы, по размерам больше напоминающей книгу - 213 страниц. В этой работе ученые тщательно проверили все выкладки Перельмана, подробно пояснив различные утверждения, которые в работе российского математика были лишь вскользь обозначены. Вердикт исследователей был однозначен: доказательство абсолютно верное.

Неожиданный поворот в этой истории наступил в июле этого же года. В журнале Asian Journal of Mathematics появилась статья китайских математиков Сипин Чжу и Хуайдун Цао под названием "Полное доказательство гипотезы геометризации Терстона и гипотезы Пуанкаре". В рамках этой работы результаты Перельмана рассматривались как важные, полезные, но исключительно промежуточные. Данная работа вызвала удивление у специалистов на Западе, однако получила очень одобрительные отзывы на Востоке. В частности, результаты поддержал Шинтан Яу - один из основоположников теории Калаби-Яу, положившей начало теории струн, - а также учитель Цао и Джу. По счастливому стечению обстоятельств именно Яу был главным редактором журнала Asian Journal of Mathematics, в котором была опубликована работа.

После этого математик стал ездить по миру с популярными лекциями, рассказывая о достижениях китайских математиков. В результате возникла опасность, что очень скоро результаты Перельмана и даже Гамильтона окажутся отодвинуты на второй план. Такое в истории математики случалось не раз - многие теоремы, носящие имена конкретных математиков, были придуманы совершенно другими людьми.

Однако этого не случилось и, вероятно, теперь не случится. Вручение премии Клэя Перельману (даже если тот откажется) навсегда закрепило в общественном сознании факт: российский математик Григорий Перельман доказал гипотезу Пуанкаре. И неважно, что на самом деле он доказал факт более общий, развив по пути совершенно новую теорию особенностей потоков Риччи. Хотя бы так. Награда нашла героя.
Андрей Коняев

Подготовил: Сергей Коваль

Английский язык