Фигуры эйлера. Презнтаця по математике на тему "круги эйлера - венна". Задача про любимые мультфильмы

Если Вы считаете, что ничего не знаете о таком понятии, как круги Эйлера, то вы глубоко заблуждаетесь. Еще из младшей школы известны схематические изображения, или кружки, позволяющие наглядно осмыслить взаимоотношения между понятиями и элементами системы.

Метод, придуманный Леонардом Эйлером, использовался ученым для решения сложных математических задач. Кругами он изображал множества и сделал эту схему основой такого понятия, как символическая . Метод призван максимально упростить рассуждения, направленные на решении той или иной задачи, именно поэтому методика активно используется как в младшей школе, так и в академической среде. Интересно, что подобный подход был ранее использован немецким философом Лейбницем, а позже был подхвачен и применен в различных модификациях известными умами в области математики. Например, прямоугольные схемы чешского Больцано, Шредера, Венна, известного созданием популярной диаграммы, основанной на этом простом, но удивительно действенном методе.

Круги являются основой так называемых «наглядных интернет мемов», которые основаны на схожести признаков отдельных множеств. Забавно, наглядно, а главное понятно.

Круги мысли

Круги позволяют наглядно описать условия задачи и мгновенно принять верное решение, или выявить направление движение в сторону правильного ответа. Как правило, круги Эйлера используются для решения логико-математических задач, связанных с множествами, их объединениями или частичными наложениями. В пересечение кругов попадают объекты, обладающие свойствами каждого из изображенных кружком множеств. Объекты, не вошедшие в множество, находятся за пределами того или иного круга. Если понятия абсолютно равнозначны, они обозначаются одним кругом, представляющим собой объединение двух множеств, имеющих равные свойства и объемы.

Логика взаимосвязей

Используя круги Эйлера, вы можете решить ряд бытовых задач и даже определиться с выбором будущей профессии, стоит лишь проанализировать свои возможности и желания и выбрать их максимальное пересечение.

Теперь становится ясно, что круги Эйлера вовсе не абстрактное математическое и философское понятие из разряда теоретических знаний, они имеют весьма прикладное и практическое значение, позволяя разобраться не только с простейшими математическими проблемами, но и решить важные жизненные дилеммы наглядным и понятным каждому способом.

Круги Эйлера – это геометрическая схема. С ее помощью можно изобразить отношения между подмножествами (понятиями), для наглядного представления.

Способ изображения понятий в виде кругов позволяет развивать воображение и логическое мышление не только детям, но и взрослым. Начиная с 4-5 лет детям доступно решение простейших задач с кругами Эйлера, сначала с разъяснениями взрослых, а потом и самостоятельно. Овладение методом решения задач с помощью кругов Эйлера формирует у ребенка способность анализировать, сопоставлять, обобщать и группировать свои знания для более широкого применения.

Пример

На рисунке представлено множество – все возможные игрушки. Некоторые из игрушек являются конструкторами – они выделены в отдельный овал. Это часть большого множества «игрушки» и одновременно отдельное множество (ведь конструктором может быть и «Лего», и примитивные конструкторы из кубиков для малышей). Какая-то часть большого множества «игрушки» может быть заводными игрушками. Они не конструкторы, поэтому мы рисуем для них отдельный овал. Желтый овал «заводной автомобиль» относится одновременно к множеству «игрушки» и является частью меньшего множества «заводная игрушка». Поэтому и изображается внутри обоих овалов сразу.

Вот несколько задач для маленьких детей на логическое мышление:

  • Определить круги, которые подходят к описанию предмета. При этом желательно обратить внимание на те качества, которыми предмет обладает постоянно и которыми временно. Например, стеклянный стакан с соком всегда остается стеклянным, но сок в нем есть не всегда. Или существует какое-то обширное определение, которое включает в себя разные понятия, подобную классификацию тоже можно изобразить с помощью кругов Эйлера. Например, виолончель – это музыкальный инструмент, но не каждый музыкальный инструмент окажется виолончелью.




Для детей постарше можно предлагать варианты задач с вычислениями – от достаточно простых до совсем сложных. Причем самостоятельное придумывание этих задач для детей обеспечит родителям очень хорошую разминку для ума.

  • 1. Из 27 пятиклассников все изучают иностранные языки – английский и немецкий. 12 изучают немецкий язык, а 19 – английский. Необходимо определить, сколько пятиклассников заняты изучением двух иностранных языков; сколько не изучают немецкий; сколько не изучают английский; сколько изучают только немецкий и только английский?

При этом первый вопрос задачи намекает в целом на путь к решению этой задачи, сообщая, что некоторые школьники изучают оба языка, и в этом случае использование схемы также упрощает понимание задачи детьми.

Разделы: Информатика

1. Введение

В курсе Информатики и ИКТ основной и старшей школы рассматриваются такие важные темы как “Основы логики” и “Поиск информации в Интернет”. При решении определенного типа задач удобно использовать круги Эйлера (диаграммы Эйлера-Венна).

Математическая справка. Диаграммы Эйлера-Венна используются прежде всего в теории множеств как схематичное изображение всех возможных пересечений нескольких множеств. В общем случае они изображают все 2 n комбинаций n свойств. Например, при n=3 диаграмма Эйлера-Венна обычно изображается в виде трех кругов с центрами в вершинах равностороннего треугольника и одинаковым радиусом, приблизительно равным длине стороны треугольника.

2. Представление логических связок в поисковых запросах

При изучении темы “Поиск информации в Интернет” рассматриваются примеры поисковых запросов с использованием логических связок, аналогичным по смыслу союзам “и”, “или” русского языка. Смысл логических связок становится более понятным, если проиллюстрировать их с помощью графической схемы – кругов Эйлера (диаграмм Эйлера-Венна).

Логическая связка Пример запроса Пояснение Круги Эйлера
& - “И” Париж & университет Будут отобраны все страницы, где упоминаются оба слова: Париж и университет Рис.1
| - “ИЛИ” Париж | университет Будут отобраны все страницы, где упоминаются слова Париж и/или университет Рис.2

3. Связь логических операций с теорией множеств

С помощью диаграмм Эйлера-Венна можно наглядно представить связь логических операций с теорией множеств. Для демонстрации можно воспользоваться слайдами в Приложение 1.

Логические операции задаются своими таблицами истинности. В Приложении 2 подробно рассматриваются графические иллюстрации логических операций вместе с их таблицами истинности. Поясним принцип построения диаграммы в общем случае. На диаграмме – область круга с именем А отображает истинность высказывания А (в теории множеств круг А – обозначение всех элементов, входящих в данное множество). Соответственно, область вне круга отображает значение “ложь” соответствующего высказывания. Что бы понять какая область диаграммы будет отображением логической операции нужно заштриховать только те области, в которых значения логической операции на наборах A и B равны “истина”.

Например, значение импликации равно “истина” в трех случаях (00, 01 и 11). Заштрихуем последовательно: 1) область вне двух пересекающихся кругов, которая соответствует значениям А=0, В=0; 2) область, относящуюся только к кругу В (полумесяц), которая соответствует значениям А=0, В=1; 3) область, относящуюся и к кругу А и к кругу В (пересечение) – соответствует значениям А=1, В=1. Объединение этих трех областей и будет графическим представлением логической операции импликации.

4. Использование кругов Эйлера при доказательстве логических равенств (законов)

Для того, чтобы доказать логические равенства можно применить метод диаграмм Эйлера-Венна. Докажем следующее равенство ¬(АvВ) = ¬А&¬В (закон де Моргана).

Для наглядного представления левой части равенства выполним последовательно: заштрихуем оба круга (применим дизъюнкцию) серым цветом, затем для отображения инверсии заштрихуем область за пределами кругов черным цветом:

Рис.3 Рис.4

Для визуального представления правой части равенства выполним последовательно: заштрихуем область для отображения инверсии (¬А) серым цветом и аналогично область ¬В также серым цветом; затем для отображения конъюнкции нужно взять пересечение этих серых областей (результат наложения представлен черным цветом):

Рис.5 Рис.6 Рис.7

Видим, что области для отображения левой и правой части равны. Что и требовалось доказать.

5. Задачи в формате ГИА и ЕГЭ по теме: “Поиск информации в Интернет”

Задача №18 из демо-версии ГИА 2013.

В таблице приведены запросы к поисковому серверу. Для каждого запроса указан его код – соответствующая буква от А до Г. Расположите коды запросов слева направо в порядке убывания количества страниц, которые найдет поисковый сервер по каждому запросу.

Код Запрос
А (Муха & Денежка) | Самовар
Б Муха & Денежка & Базар & Самовар
В Муха | Денежка | Самовар
Г Муха & Денежка & Самовар

Для каждого запроса построим диаграмму Эйлера-Венна:

Запрос А Запрос Б

Запрос В

Запрос Г

Ответ: ВАГБ.

Задача В12 из демо-версии ЕГЭ-2013.

В таблице приведены запросы и количество найденных по ним страниц некоторого сегмента сети Интернет.

Запрос Найдено страниц (в тысяч)
Фрегат | Эсминец 3400
Фрегат & Эсминец 900
Фрегат 2100

Какое количество страниц (в тысячах) будет найдено по запросу Эсминец ?

Считается, что все запросы выполнялись практически одновременно, так что набор страниц, содержащих все искомые слова, не изменялся за время выполнения запросов.

Ф – количество страниц (в тысячах) по запросу Фрегат ;

Э – количество страниц (в тысячах) по запросу Эсминец ;

Х – количество страниц (в тысячах) по запросу, в котором упоминается Фрегат и не упоминается Эсминец ;

У – количество страниц (в тысячах) по запросу, в котором упоминается Эсминец и не упоминается Фрегат.

Построим диаграммы Эйлера-Венна для каждого запроса:

Запрос Диаграмма Эйлера-Венна Количество страниц
Фрегат | Эсминец Рис.12

3400
Фрегат & Эсминец Рис.13

900
Фрегат Рис.14 2100
Эсминец Рис.15 ?

Согласно диаграммам имеем:

  1. Х+900+У = Ф+У = 2100+У = 3400. Отсюда находим У = 3400-2100 = 1300.
  2. Э = 900+У = 900+1300= 2200.

Ответ: 2200.

6. Решение логических содержательных задач методом диаграмм Эйлера-Венна

В классе 36 человек. Ученики этого класса посещают математический, физический и химический кружки, причем математический кружок посещают 18 человек, физический - 14 человек, химический - 10. Кроме того, известно, что 2 человека посещают все три кружка, 8 человек - и математический и физический, 5 и математический и химический, 3 - и физический и химический.

Сколько учеников класса не посещают никаких кружков?

Для решения данной задачи очень удобным и наглядным является использование кругов Эйлера.

Самый большой круг – множество всех учеников класса. Внутри круга три пересекающихся множества: членов математического (М ), физического (Ф ), химического (Х ) кружков.

Пусть МФХ – множество ребят, каждый из которых посещает все три кружка. МФ¬Х – множество ребят, каждый из которых посещает математический и физический кружки и не посещает химический. ¬М¬ФХ - множество ребят, каждый из которых посещает химический кружок и не посещает физический и математический кружки.

Аналогично введем множества: ¬МФХ, М¬ФХ, М¬Ф¬Х, ¬МФ¬Х, ¬М¬Ф¬Х.

Известно, что все три кружка посещают 2 человека, следовательно, в область МФХ впишем число 2. Т.к. 8 человек посещают и математический и физический кружки и среди них уже есть 2 человека, посещающих все три кружка, то в область МФ¬Х впишем 6 человек (8-2). Аналогично определим количество учащихся в остальных множествах:

Просуммируем количество человек по всем областям: 7+6+3+2+4+1+5=28. Следовательно, 28 человек из класса посещают кружки.

Значит, 36-28 = 8 учеников не посещают кружки.

После зимних каникул классный руководитель спросил, кто из ребят ходил в театр, кино или цирк. Оказалось, что из 36 учеников класса двое не были ни в кино. ни в театре, ни в цирке. В кино побывало 25 человек, в театре - 11, в цирке 17 человек; и в кино, и в театре - 6; и в кино и в цирке - 10; и в театре и в цирке - 4.

Сколько человек побывало и в кино, и в театре, и в цирке?

Пусть х – количество ребят, которые побывали и в кино, и в театре, и в цирке.

Тогда можно построить следующую диаграмму и посчитать количество ребят в каждой области:

В кино и театре побывало 6 чел., значит, только в кино и театре (6-х) чел.

Аналогично, только в кино и цирке (10-х) чел.

Только в театре и цирке (4-х) чел.

В кино побывало 25 чел., значит, из них только в кино были 25 - (10-х) – (6-х) – х = (9+х).

Аналогично, только в театре были (1+х) чел.

Только в цирке были (3+х) чел.

Не были в театре, кино и цирке – 2 чел.

Значит, 36-2=34 чел. побывали на мероприятиях.

С другой стороны можем просуммировать количество человек, которые были в театре, кино и цирке:

(9+х)+(1+х)+(3+х)+(10-х)+(6-х)+(4-х)+х = 34

Отсюда следует, что только один человек побывал на всех трех мероприятиях.

Таким образом, круги Эйлера (диаграммы Эйлера-Венна) находят практическое применение при решении задач в формате ЕГЭ и ГИА и при решении содержательных логических задач.

Литература

  1. В.Ю. Лыскова, Е.А. Ракитина. Логика в информатике. М.: Информатика и Образование, 2006. 155 с.
  2. Л.Л. Босова. Арифметические и логические основы ЭВМ. М.: Информатика и образование, 2000. 207 с.
  3. Л.Л. Босова, А.Ю. Босова. Учебник. Информатика и ИКТ для 8 класса: БИНОМ. Лаборатория знаний, 2012. 220 с.
  4. Л.Л. Босова, А.Ю. Босова. Учебник. Информатика и ИКТ для 9 класса: БИНОМ. Лаборатория знаний, 2012. 244 с.
  5. Сайт ФИПИ: http://www.fipi.ru/

Текст работы размещён без изображений и формул.
Полная версия работы доступна во вкладке "Файлы работы" в формате PDF

В наше время вокруг нас собрано огромное количества информации, разобраться в ней бывает непросто. Поэтому многие не знают, что за названием «Круги Эйлера» скрывается практичный и удобный метод решения различных задач. Все слышали о них, но немногие могут объяснить, что это такое. Однако я считаю, что Круги Эйлера полезны как в повседневной жизни, так и в науке, поэтому ими стоит уметь пользоваться каждому. В этой работе я собрала всю необходимую информацию для понимания, что такое Круги Эйлера и где их удобно применять.

Круги Эйлера — это геометрическая схема, с помощью которой можно наглядно изобразить отношения между различными множествами и подмножествами. Такая схема помогает находить логические связи между явлениями и понятиями, она изобретена Леонардом Эйлером, используется в математике и других научных дисциплинах. Использование Кругов Эйлера упрощает рассуждения и помогает быстрее и проще получить ответ. (1),(2)

Круги Эйлера неотрывно связаны с понятием множества. Поэтому, чтобы лучше понимать, что изображено на кругах Эйлера, нужно знать, что такое множество и какие множества бывают.

Под множеством можно понимать совокупность каких-либо объектов, называемых элементами множества. Во множества можно объединять любые объекты с общим признаком. Например, множество учеников гимназии 11, учащихся в 7 «Б» классе составляют отдельное множество. Множества могут быть и неодушевленных предметов. Например, множество книг, написанных каким-либо автором. С помощью кругов Эйлера множество обозначается, как пустой круг, а входящие в него элементы - точками. (5)

Давайте изобразим множество цифр. На рисунке контуром обозначено множество, а точками элементы этого множества.

Множества бывают трех видов:

· Конечное (например - множество цифр)

· Бесконечное (например - множество чисел)

· Пустое (множество натуральных чисел

меньше нуля). (5)

Группа предметов, образующая множество, входящее в состав более обширного множества, изображается в виде меньшего круга, нарисованного внутри большего круга, и называется подмножеством. Такое отношение образуется между большим множеством животных и входящим в его состав подмножеством плоских червей. (5)

В тех случаях, когда два понятия совпадают только частично, отношение между такими множествами изображается с помощью двух перекрещивающихся кругов. Такое отношение образуется между множеством учащихся 7 «Б» класса и множество троечников. Некоторые элементы множества учеников 7 «Б» класса принадлежат и к множеству троечников. (5)

Когда ни один предмет, из одного множества, не может одновременно принадлежать второму множеству, то отношение между ними изображается посредством двух кругов, нарисованных один вне другого. Такими множествами являются множество отрицательных и множество положительных чисел. (5)

Круги Эйлера были изобретены и названы в честь Леона́рда Э́йлера (портрет слева). Это был швейцарский математик, внёсший значительный вклад в развитие математики, а также механики, физики, астрономии и ряда прикладных наук. Эйлер родился в Швейцарии, учился в Германии, но работал и умер в России. Этот ученый - автор 800 работ. Леонард Эйлер родился в 1707 году в семье пастора. Его отец был другом семьи Бернулли. У Эйлера рано проявились математические способности. Обучаясь в гимназии, мальчик увлечённо занимался математикой, а позже стал посещать университетские лекции Иоганна Бернулли. 20 октября 1720 года Леонард Эйлер стал студентом факультета искусств Базельского университета. Одаренный молодой человек обратил на себя внимание профессора Иоганна Бернулли. Он передал студенту математические статьи для изучения, а также пригласил приходить к нему домой, чтобы совместно разбирать непонятное. В доме своего учителя Эйлер встретился и начал общаться с сыновьями Бернулли — Даниилом (портрет слева) и Николаем (потрет справа), которые тоже занимались математикой. (6)

Юный Эйлер написал несколько научных работ. «Диссертация по физике о звуке» получила благоприятный отзыв. В то время число научных вакансий в Швейцарии было невелико. Поэтому братья Даниил и Николай Бернулли уехали в Россию, где начинала создаваться Российская Академия наук; они обещали похлопотать там и о должности для Эйлера. В начале зимы 1726 года Эйлеру пришло письмо из Санкт - Петербурга: по рекомендации братьев Бернулли он приглашён на должность адъюнкта по физиологии с окладом 200 рублей. Эйлер провёл много времени в России, где внёс существенный вклад в российскую науку. С 1731 был избран академиком Петербургской Академии. Хорошо знал русский язык, а сочинения и учебники публиковал на русском. (6)

Тогда Эйлер подробно описывает свой метод решения некоторых задач при помощи кругов Эйлера. В 1741 году Эйлер пишет «Письма о разных физических и философических материях, к некоторой немецкой принцессе..», где упоминаются «круги Эйлера». Эйлер писал, что «круги очень подходят для того, чтобы облегчить наши размышления». (3)

Метод Эйлера получил заслуженное признание и популярность. И после него немало ученых использовали его в своей работе, а также видоизменяли по-своему. Бернард Больцано использовал тот же метод, но с прямоугольными схемами. Благодаря вкладу Венна метод даже называют диаграммами Венна или еще Эйлера-Венна. Круги Эйлера имеют прикладное назначение, то есть с их помощью на практике решаются задачи на объединение или пересечение множеств в математике, логике, менеджменте и не только. (1)

Вот несколько задач для решения, которых, удобно использовать круги Эйлера:

Задача 1.

У ребят из одной школы спрашивали об их домашних животных. 100 из них ответили, что у них дома есть собака и/или кошка. У 87 ребят была одна собака, а у 63 ребят - одна кошка. У скольких ребят есть и собака и кошка?

Решение:

    Чтобы решить эту задачу, не используя круги Эйлера нужно подсчитать, сколько собак и кошек было у учеников. Для этого нужно сложить 87 и 63. 87+63=150 домашних животных. Учеников было всего лишь 100, а дробного числа домашних животных получиться не может. Значит если у каждого ученика 1 домашнее животное, остается еще 50 лишних. Следовательно, у 50 учеников 2 домашних животных. И так как в задаче указано, что ни у одного из учеников нет 2 кошек или 2 собак, то это значит, что у 50 учеников есть и кошка и собака.

Но этот способ долгий и подходит только для простых задач. Такую задачу намного удобнее решить через круги Эйлера.

Красным кругом изобразим множество обладателей собак, а синим множество обладателей кошек. Всего учеников было 100. Тех, у кого есть и кошка, и собака Х. Чтобы найти количество учеников, у которых только собака нужно из 87 вычесть Х. Так как всего учеников 100, мы получаем:

Х=50 учеников

Ответ: у 50 учеников есть и кошка и собака

Задача 2.

Однажды учеников спросили, кто из них любит математику, кому нравится русский язык, а кому физика. Оказалось, что из 36 учеников 2 не любят ни математику, ни русский, ни физику. Математика нравится 25 ученикам, русский язык- 11, физика - 17 ученикам; и математика, и русский- 6; и математика, и физика- 10; русский язык и физика - 4.

Сколько человек любят все три предмета?

Решение:

Изобразим 3 множества. Красное множество тех, кто любит математику, синие тех, кто любит русский язык, зеленое - физику.

Теперь впишем в множества количество элементов. 6 человек любят и русский и математику. Из них X человек любят еще и физику. Значит, только математику и русский любят 6-Х человек. Только математику и физику 10-Х, только русский и физику 4-Х человек. 25 человек любят математику. Но Х, 6-Х, 10-Х человек любят и другие предметы. Значит, только математику любят 25-(6-Х)-(10-Х)-Х= 25-6+Х-10+Х -Х=5+Х человек. Только русский любят 11-(6-Х)-(4-Х)-Х= 11-10+2Х-Х=1+Х учеников, только физику 17-(10-Х) -(4-Х)-Х= 17-14+2Х-Х= 3+Х.

Так как 2 человека не любят ни один из этих предметов, то:

3+Х+9+Х+1+Х+6-Х+10-Х+4-Х+Х=36-2

Ответ: 1 человек любит все три предмета

Задача 3.

В таблице приведены запросы и количество найденных по ним страниц некоторого сегмента сети Интернет.

Какое количество страниц (в тысячах) будет найдено по запросу природа? (4)

Решение :

По запросу человек было найдено 2100 тысяч страниц. 900 из них еще и о природе. Значит страниц только о человеке 2100-900=200 тысяч, а только о природе Х-900 тысяч. Получаем, что:

2100-900+Х-900+900=3400

2100-900+Х=3400

Х=2200 тысяч страниц

Ответ: по запросу природа будет найдено 2200 тысяч страниц.

Как видите Круги Эйлера - это полезное и важное открытие для математики в целом и для каждого из нас в частности. Круги Эйлера встречаются не только на экзаменах, но и нужны нам в повседневной жизни. Это интересная и необходимая вещь, о которой не стоит забывать.

Литература:

    https://www.tutoronline.ru/blog/krugi-jejlera

    https://ru.wikipedia.org/wiki/%D0%9A%D1%80%D1%83%D0%B3%D0%B8_%D0%AD%D0%B9%D0%BB%D0%B5%D1%80%D0%B0

    http://sibac.info/shcoolconf/science/xvii/42485

    http://www.jwy.narod.ru/logic/_04_eiler.html

    https://ru.wikipedia.org/wiki/%D0%AD%D0%B9%D0%BB%D0%B5%D1%80,_%D0%9B%D0%B5%D0%BE%D0%BD%D0%B0%D1%80%D0%B4

Круги Эйлера - одна из самых простых тем, которые необходимы Вам для поступления в 5 класс физико-математических лицеев . На самом деле, круги Эйлера - это ни что иное, как графическое представление множеств. Объекты, обладающие определённым свойством находятся внутри круга Эйлера-Венна , не обладающие - находятся вне. Разумеется, обычно на диаграмме присутствует не один круг, а несколько, каждый из которых объединяет объекты с каким-то своим свойством. Любая задача из данного блока сводится к тому, что необходимо посчитать количество элементов в какой-либо области. Разберём на примерах, что же надо делать:

Задачи на множества людей

В классе учится учеников. изучают английский, немецкий и французский. Ни одного языка не знают человека. Также известно, что из всех ребят только один мальчик изучает языка: английский и французский. Сколько человек изучает языка?

Для решения задачи обозначим количество искомых учеников за (тех, кто изучает языка). Количество учеников, изучающих другое количество языков выразим через и условия в задаче. Диаграмма Эйлера-Венна в данном случае будет выглядеть следующим образом: Например, ребята, которые знают только английский язык, обозначены красным цветом и их количество .

Заметим, что у нас никак не использовано общее количество учеников - это условие и породит то самое уравнение, с помощью которого решится задача:





Получается, что все языка изучают человек (Можете теперь, зная , самостоятельно восстановить сколько каких учеников было в классе и проверить ответ)

Задачи на делимость (сложная делимость)

Это задачи уже повышенной сложности. Предварительно советуем изучить тему . Обязательно к прочтению только тем, кто собирается занимать призовые места.

Для скольких чисел между и верно следующее утверждение: число делится на или не делится на ?

Такое страшное и непонятное условие становится простым, если воспользоваться кругами Эйлера . Понятно, что в этой задаче рассматриваются числа, которые - нас интересуют те, что внутри соответствующего круга. Также есть числа, которые vdots 12 - нас интересуют числа, которые вне. А что же с числами, которые принадлежат обоим множествам? Во-первых, каким общим свойством они обладают, а во-вторых, интересуют ли они нас?

Сначала ответим на первый вопрос. Оказывается, если число одновременно делится на два других числа, то оно делится на Наименьшее Общее Кратное этих двух чисел, то есть на минимальное число, которое делится без остатка на оба исследуемых. Для чисел и НОК есть ничто иное, как число , так как и , а меньше числа с такими свойствам нет. Итого, в пересечении наших множеств лежат числа, которые .

Далее необходимо заметить, что в условии употреблено слово "ИЛИ" . Это значит, что для искомых чисел должно быть верно ХОТЯ БЫ ОДНО из предложенных утверждений (возможно и оба). То есть нам подходят числа которые внутри круга чисел, которые , а также все числа, которые вне круга .

Итак, диаграмма Эйлера-Венна выглядит следующим образом: Штриховкой обозначены те числа, которые и надо найти. Теперь, надеюсь, очевидно, что нам необходимо найти, сколько всего числе в рассматриваемой задаче, из этого количества вычесть количество чисел, которые и прибавить количество чисел, которые .

Итак, приступим:


Получается, что искомых чисел

Итак, подведём итог. Если Вы собираетесь поступать в 5 класс физико-математического лицея , то общие знания по кругам Эйлера-Венна Вам необходимы. Основная область применения - задачи, где присутствуют множества объектов, обладающих определёнными свойствами, и необходимо найти количество объектов обладающих (или не обладающих) совокупностью указанных свойств.

ОБЖ