Уничтожить мир? Термоядерная бомба: история и мифы. Водородная (термоядерная) бомба: испытания оружия массового поражения Устройство водородной бомбы схема

12 августа 1953 года на Семипалатинском полигоне была испытана первая советская водородная бомба.

А 16 января 1963 года, в самый разгар холодной войны, Никита Хрущёв заявил миру о том, что Советский союз обладает в своём арсенале новым оружием массового поражения. За полтора года до этого в СССР был произведён самый мощный взрыв водородной бомбы в мире — на Новой Земле был взорван заряд мощностью свыше 50 мегатонн. Во многом именно это заявление советского лидера заставило мир осознать угрозу дальнейшей эскалации гонки ядерных вооружений: уже 5 августа 1963 г. в Москве был подписан договор о запрещении испытаний ядерного оружия в атмосфере, космическом пространстве и под водой.

История создания

Теоретическая возможность получения энергии путём термоядерного синтеза была известна ещё до Второй мировой войны, но именно война и последующая гонка вооружений поставили вопрос о создании технического устройства для практического создания этой реакции. Известно, что в Германии в 1944 году велись работы по инициированию термоядерного синтеза путём сжатия ядерного топлива с использованием зарядов обычного взрывчатого вещества — но они не увенчались успехом, так как не удалось получить необходимых температур и давления. США и СССР вели разработки термоядерного оружия начиная с 40-х годов, практически одновременно испытав первые термоядерные устройства в начале 50-х. В 1952 году на атолле Эниветок США осуществили взрыв заряда мощностью 10,4 мегатонны (что в 450 раз больше мощности бомбы, сброшенной на Нагасаки), а в 1953 году в СССР было испытано устройство мощностью 400 килотонн.

Конструкции первых термоядерных устройств были плохо приспособленными для реального боевого использования. К примеру, устройство, испытанное США в 1952 году, представляло собой наземное сооружение высотой с 2-этажный дом и весом свыше 80 тонн. Жидкое термоядерное горючее хранилось в нём с помощью огромной холодильной установки. Поэтому в дальнейшем серийное производство термоядерного оружия осуществлялось с использованием твёрдого топлива — дейтерида лития-6. В 1954 году США испытали устройство на его основе на атолле Бикини, а в 1955 году на Семипалатинском полигоне была испытана новая советская термоядерная бомба. В 1957 году испытания водородной бомбы провели в Великобритании. В октябре 1961 года в СССР на Новой Земле была взорвана термоядерная бомба мощностью 58 мегатонн — самая мощная бомба из когда-либо испытанных человечеством, вошедшая в историю под названием «Царь-бомба».

Дальнейшее развитие было направлено на уменьшение размеров конструкции водородных бомб, чтобы обеспечить их доставку к цели баллистическими ракетами. Уже в 60-е годы массу устройств удалось уменьшить до нескольких сотен килограммов, а к 70-м годам баллистические ракеты могли нести свыше 10 боеголовок одновременно — это ракеты с разделяющимися головными частями, каждая из частей может поражать свою собственную цель. На сегодняшний день термоядерным арсеналом обладают США, Россия и Великобритания, испытания термоядерных зарядов были проведены также в Китае (в 1967 году) и во Франции (в 1968 году).

Принцип действия водородной бомбы

Действие водородной бомбы основано на использовании энергии, выделяющейся при реакции термоядерного синтеза лёгких ядер. Именно эта реакция протекает в недрах звёзд, где под действием сверхвысоких температур и гигантского давления ядра водорода сталкиваются и сливаются в более тяжёлые ядра гелия. Во время реакции часть массы ядер водорода превращается в большое количество энергии — благодаря этому звёзды и выделяют огромное количество энергии постоянно. Учёные скопировали эту реакцию с использованием изотопов водорода — дейтерия и трития, что и дало название «водородная бомба». Изначально для производства зарядов использовались жидкие изотопы водорода, а впоследствии стал использоваться дейтерид лития-6, твёрдое вещество, соединение дейтерия и изотопа лития.

Дейтерид лития-6 является основным компонентом водородной бомбы, термоядерным горючим. В нём уже хранится дейтерий, а изотоп лития служит сырьём для образования трития. Для начала реакции термоядерного синтеза требуется создать высокие температуру и давление, а также выделить из лития-6 тритий. Эти условия обеспечивают следующим образом.

Оболочку контейнера для термоядерного горючего делают из урана-238 и пластика, рядом с контейнером размещают обычный ядерный заряд мощностью несколько килотонн — его называют триггером, или зарядом-инициатором водородной бомбы. Во время взрыва плутониевого заряда-инициатора под действием мощного рентгеновского излучения оболочка контейнера превращается в плазму, сжимаясь в тысячи раз, что создаёт необходимое высокое давление и огромную температуру. Одновременно с этим нейтроны, испускаемые плутонием, взаимодействуют с литием-6, образуя тритий. Ядра дейтерия и трития взаимодействуют под действием сверхвысоких температуры и давления, что и приводит к термоядерному взрыву.

Если сделать несколько слоёв урана-238 и дейтерида лития-6, то каждый из них добавит свою мощность ко взрыву бомбы — т. е. такая «слойка» позволяет наращивать мощность взрыва практически неограниченно. Благодаря этому водородную бомбу можно сделать почти любой мощности, причём она будет гораздо дешевле обычной ядерной бомбы такой же мощности.

У многих наших читателей водородная бомба ассоциируется с атомной, только гораздо более мощной. На самом деле это принципиально новое оружие, потребовавшее для своего создания несоизмеримо больших интеллектуальных усилий и работающее на принципиально других физических принципах.

Редакция ПМ


«Слойка»

Современная бомба

Единственно, что роднит атомную и водородную бомбу, так это то, что обе высвобождают колоссальную энергию, скрытую в атомном ядре. Сделать это можно двумя путями: разделить тяжелые ядра, например, урана или плутония, на более легкие (реакция деления) или заставить слиться легчайшие изотопы водорода (реакция синтеза). В результате обеих реакций масса получившегося материала всегда меньше массы исходных атомов. Но масса не может исчезнуть бесследно — она переходит в энергию по знаменитой формуле Эйнштейна E=mc2.

A-bomb

Для создания атомной бомбы необходимым и достаточным условием является получение делящегося материала в достаточном количестве. Работа довольно трудоемкая, но малоинтеллектуальная, лежащая ближе к горнорудной промышленности, чем к высокой науке. Основные ресурсы при создании такого оружия уходят на строительство гигантских урановых рудников и обогатительных комбинатов. Свидетельством простоты устройства является тот факт, что между получением необходимого для первой бомбы плутония и первым советским ядерным взрывом не прошло и месяца.

Напомним вкратце принцип работы такой бомбы, известный из курса школьной физики. В ее основе лежит свойство урана и некоторых трансурановых элементов, например, плутония, при распаде выделять более одного нейтрона. Эти элементы могут распадаться как самопроизвольно, так и под воздействием других нейтронов.

Высвободившийся нейтрон может покинуть радиоактивный материал, а может и столкнуться с другим атомом, вызвав очередную реакцию деления. При превышении определенной концентрации вещества (критической массе) количество новорожденных нейтронов, вызывающих дальнейшее деление атомного ядра, начинает превышать количество распадающихся ядер. Количество распадающихся атомов начинает расти лавинообразно, рождая новые нейтроны, то есть происходит цепная реакция. Для урана-235 критическая масса составляет около 50 кг, для плутония-239 — 5,6 кг. То есть шарик плутония массой чуть меньше 5,6 кг представляет собой просто теплый кусок металла, а массой чуть больше существует всего несколько наносекунд.

Собственно схема работы бомбы простая: берем две полусферы урана или плутония, каждая чуть меньше критической массы, располагаем их на расстоянии 45 см, обкладываем взрывчаткой и взрываем. Уран или плутоний спекается в кусок надкритической массы, и начинается ядерная реакция. Все. Существует другой способ запустить ядерную реакцию — обжать мощным взрывом кусок плутония: расстояние между атомами уменьшится, и реакция начнется при меньшей критической массе. На этом принципе работают все современные атомные детонаторы.

Проблемы атомной бомбы начинаются с того момента, когда мы хотим нарастить мощность взрыва. Простым увеличением делящегося материала не обойтись — как только его масса достигает критической, он детонирует. Придумывались разные хитроумные схемы, например, делать бомбу не из двух частей, а из множества, отчего бомба начинала напоминать распотрошенный апельсин, а потом одним взрывом собирать ее в один кусок, но все равно при мощности свыше 100 килотонн проблемы становились непреодолимыми.

H-bomb

А вот горючее для термоядерного синтеза критической массы не имеет. Вот Солнце, наполненное термоядерным топливом, висит над головой, внутри его уже миллиарды лет идет термоядерная реакция, — и ничего, не взрывается. К тому же при реакции синтеза, например, дейтерия и трития (тяжелого и сверхтяжелого изотопа водорода) энергии выделяется в 4,2 раза больше, чем при сгорании такой же массы урана-235.

Изготовление атомной бомбы было скорее экспериментальным, чем теоретическим процессом. Создание же водородной бомбы потребовало появления совершенно новых физических дисциплин: физики высокотемпературной плазмы и сверхвысоких давлений. Прежде чем начинать конструировать бомбу, надо было досконально разобраться в природе явлений, происходящих только в ядре звезд. Никакие эксперименты тут помочь не могли — инструментами исследователей были только теоретическая физика и высшая математика. Не случайно гигантская роль в разработке термоядерного оружия принадлежит именно математикам: Уламу, Тихонову, Самарскому и т. д.

Классический супер

К концу 1945 года Эдвард Теллер предложил первую конструкцию водородной бомбы, получившую название «классический супер». Для создания чудовищного давления и температуры, необходимых для начала реакции синтеза, предполагалось использовать обычную атомную бомбу. Сам «классический супер» представлял собой длинный цилиндр, наполненный дейтерием. Предусматривалась также промежуточная «запальная» камера с дейтериевотритиевой смесью — реакция синтеза дейтерия и трития начинается при более низком давлении. По аналогии с костром, дейтерий должен был играть роль дров, смесь дейтерия с тритием — стакана бензина, а атомная бомба — спички. Такая схема получила название «труба» — своеобразная сигара с атомной зажигалкой с одного конца. По такой же схеме начали разрабатывать водородную бомбу и советские физики.

Однако математик Станислав Улам на обыкновенной логарифмической линейке доказал Теллеру, что возникновение реакции синтеза чистого дейтерия в «супере» вряд ли возможно, а для смеси потребовалось бы такое количество трития, что для его наработки нужно было бы практически заморозить производство оружейного плутония в США.

Слойка с сахаром

В середине 1946 года Теллер предложил очередную схему водородной бомбы — «будильник». Она состояла из чередующихся сферических слоев урана, дейтерия и трития. При ядерном взрыве центрального заряда плутония создавалось необходимое давление и температура для начала термоядерной реакции в других слоях бомбы. Однако для «будильника» требовался атомный инициатор большой мощности, а США (как, впрочем, и СССР) испытывали проблемы с наработкой оружейного урана и плутония.

Осенью 1948 года к аналогичной схеме пришел и Андрей Сахаров. В Советском Союзе конструкция получила название «слойка». Для СССР, который не успевал в достаточном количестве нарабатывать оружейный уран-235 и плутоний-239, сахаровская слойка была панацеей. И вот почему.

В обычной атомной бомбе природный уран-238 не только бесполезен (энергии нейтронов при распаде не хватает для инициации деления), но и вреден, поскольку жадно поглощает вторичные нейтроны, замедляя цепную реакцию. Поэтому оружейный уран на 90% состоит из изотопа уран-235. Однако нейтроны, появляющиеся в результате термоядерного синтеза, в 10 раз более энергетичные, чем нейтроны деления, и облученный такими нейтронами природный уран-238 начинает превосходно делиться. Новая бомба позволяла использовать в качестве взрывчатки уран-238, который прежде рассматривался как отходы производства.

Изюминкой сахаровской «слойки» было также применение вместо остродефицитного трития белого легкого кристаллического вещества — дейтрида лития 6LiD.

Как упоминалось выше, смесь дейтерия и трития поджигается гораздо легче, чем чистый дейтерий. Однако на этом достоинства трития заканчиваются, а остаются одни недостатки: в нормальном состоянии тритий — газ, из-за чего возникают трудности с хранением; тритий радиоактивен и, распадаясь, превращается в стабильный гелий-3, активно пожирающий столь необходимые быстрые нейтроны, что ограничивает срок годности бомбы несколькими месяцами.

Нерадиоактивный дейтрид лития же при облучении его медленными нейтронами деления — последствиями взрыва атомного запала — превращается в тритий. Таким образом, излучение первичного атомного взрыва за мгновение вырабатывает достаточное для дальнейшей термоядерной реакции количество трития, а дейтерий в дейтриде лития присутствует изначально.

Именно такая бомба, РДС-6с, и была успешно испытана 12 августа 1953 на башне Семипалатинского полигона. Мощность взрыва составила 400 килотонн, и до сих пор не прекратились споры, был ли это настоящий термоядерный взрыв или сверхмощный атомный. Ведь на реакцию термоядерного синтеза в сахаровской слойке пришлось не более 20% суммарной мощности заряда. Основной вклад во взрыв внесла реакция распада облученного быстрыми нейтронами урана-238, благодаря которому РДС-6с и открыла эру так называемых «грязных» бомб.

Дело в том, что основное радиоактивное загрязнение дают как раз продукты распада (в частности, стронций-90 и цезий-137). По существу, сахаровская «слойка» была гигантской атомной бомбой, лишь незначительно усиленной термоядерной реакцией. Не случайно всего один взрыв «слойки» дал 82% стронция-90 и 75% цезия-137, которые попали в атмосферу за всю историю существования Семипалатинского полигона.

Американ бомб

Тем не менее, первыми водородную бомбу взорвали именно американцы. 1 ноября 1952 года на атолле Элугелаб в Тихом океане было успешно испытано термоядерное устройство «Майк» мощностью 10 мегатонн. Назвать бомбой 74-тонное американское устройство можно с большим трудом. «Майк» представлял собой громоздкое устройство размером с двухэтажный дом, заполненное жидким дейтерием при температуре, близкой к абсолютному нулю (сахаровская «слойка» была вполне транспортабельным изделием). Однако изюминкой «Майка» были не размеры, а гениальный принцип обжатия термоядерной взрывчатки.

Напомним, что основная идея водородной бомбы состоит в создании условий для синтеза (сверхвысокого давления и температуры) посредством ядерного взрыва. В схеме «слойка» ядерный заряд расположен в центре, и поэтому он не столько сжимает дейтерий, сколько разбрасывает его наружу — увеличение количества термоядерной взрывчатки не приводит к увеличению мощности — она просто не успевает детонировать. Именно этим и ограничена предельная мощность данной схемы — самая мощная в мире «слойка» Orange Herald, взорванная англичанами 31 мая 1957 года, дала только 720 килотонн.

Идеально было бы, если бы заставить взрываться атомный запал внутрь, сжимая термоядерную взрывчатку. Но как это сделать? Эдвард Теллер выдвинул гениальную идею: сжимать термоядерное горючее не механической энергией и нейтронным потоком, а излучением первичного атомного запала.

В новой конструкции Теллера инициирующий атомный узел был разнесен с термоядерным блоком. Рентгеновское излучение при срабатывании атомного заряда опережало ударную волну и распространялось вдоль стенок цилиндрического корпуса, испаряя и превращая в плазму полиэтиленовую внутреннюю облицовку корпуса бомбы. Плазма, в свою очередь, переизлучала более мягкое рентгеновское излучение, которое поглощалось внешними слоями внутреннего цилиндра из урана-238 — «пушера». Слои начинали взрывообразно испаряться (это явление называют абляция). Раскаленную урановую плазму можно сравнить со струями сверхмощного ракетного двигателя, тяга которого направлена внутрь цилиндра с дейтерием. Урановый цилиндр схлопывался, давление и температура дейтерия достигала критического уровня. Это же давление обжимало центральную плутониевую трубку до критической массы, и она детонировала. Взрыв плутониевого запала давил на дейтерий изнутри, дополнительно сжимая и нагревая термоядерную взрывчатку, которая детонировала. Интенсивный поток нейтронов расщепляет ядра урана-238 в «пушере», вызывая вторичную реакцию распада. Все это успевало произойти до того момента, когда взрывная волна от первичного ядерного взрыва достигала термоядерного блока. Расчет всех этих событий, происходящих за миллиардные доли секунды, и потребовал напряжения ума сильнейших математиков планеты. Создатели «Майка» испытывали от 10-мегатонного взрыва не ужас, а неописуемый восторг — им удалось не только разобраться в процессах, которые в реальном мире идут только в ядрах звезд, но и экспериментально проверить свои теории, устроив свою небольшую звезду на Земле.

Браво

Обойдя русских по красоте конструкции, американцы не смогли сделать свое устройство компактным: они использовали жидкий переохлажденный дейтерий вместо порошкообразного дейтрида лития у Сахарова. В Лос-Аламосе на сахаровскую «слойку» реагировали с долей зависти: «вместо огромной коровы с ведром сырого молока русские используют пакет молока сухого». Однако утаить секреты друг от друга обеим сторонам не удалось. Первого марта 1954 года у атолла Бикини американцы испытали 15-мегатонную бомбу «Браво» на дейтриде лития, а 22 ноября 1955 года над семипалатинским полигоном рванула первая советская двухступенчатая термоядерная бомба РДС-37 мощностью 1,7 мегатонн, снеся чуть ли не полполигона. С тех пор конструкция термоядерной бомбы претерпела незначительные изменения (например, появился урановый экран между инициирующей бомбой и основным зарядом) и стала канонической. А в мире не осталось больше столь масштабных загадок природы, разгадать которые можно было бы столь эффектным экспериментом. Разве что рождение сверхновой звезды.

12 августа 1953 года в 7.30 утра на Семипалатинском полигоне была испытана первая советская водородная бомба , которая имела служебное название "Изделие РДС‑6c". Это было четвертое по счету советское испытание ядерного оружия.

Начало первых работ по термоядерной программе в СССР относится ещё к 1945 году . Тогда была получена информация об исследованиях, ведущихся в США над термоядерной проблемой. Они были начаты по инициативе американского физика Эдварда Теллера в 1942 году. За основу была взята теллеровская концепция термоядерного оружия, получившая в кругах советских ученых‑ядерщиков название "труба" ‑ цилиндрический контейнер с жидким дейтерием, который должен был нагреваться от взрыва инициирующего устройства типа обычной атомной бомбы. Только в 1950 году американцы установили, что "труба" бесперспективна, и они продолжили разработку других конструкций. Но к этому времени советскими физиками уже была самостоятельно разработана другая концепция термоядерного оружия, которая вскоре ‑ в 1953 году ‑ привела к успеху.

Альтернативную схему водородной бомбы придумал Андрей Сахаров. В основу бомбы им была положена идея "слойки" и применения дейтерида лития‑6. Разработанный в КБ‑11 (сегодня это город Саров, бывший Арзамас‑16, Нижегородская область) термоядерный заряд РДС‑6с представлял собой сферическую систему из слоев урана и термоядерного горючего, окруженных химическим взрывчатым веществом.

Академик Сахаров - депутат и диссидент 21 мая исполняется 90 лет со дня рождения советского физика, политического деятеля, диссидента, одного из создателя советской водородной бомбы, лауреата Нобелевской премии мира академика Андрея Сахарова. Он умер в 1989 году в возрасте 68 лет, семь из которых Андрей Дмитриевич провел в ссылке.

Для увеличения энерговыделения заряда в его конструкции был использован тритий. Основная задача при создании подобного оружия заключалась в том, чтобы с помощью энергии, выделенной при взрыве атомной бомбы, нагреть и поджечь тяжелый водород — дейтерий, осуществить термоядерные реакции с выделением энергии, способные сами себя поддерживать. Для увеличения доли "сгоревшего" дейтерия Сахаров предложил окружить дейтерий оболочкой из обычного природного урана, который должен был замедлить разлет и, главное, существенно повысить плотность дейтерия. Явление ионизационного сжатия термоядерного горючего, ставшее основой первой советской водородной бомбы, до сих пор называют "сахаризацией".

По результатам работ над первой водородной бомбой Андрей Сахаров получил звание Героя Соцтруда и лауреата Сталинской премии.

"Изделие РДС‑6с" было выполнено в виде транспортабельной бомбы весом 7 тонн, которая помещалась в бомбовом люке бомбардировщика Ту‑16. Для сравнения — бомба, созданная американцами, весила 54 тонн и была размером с трехэтажный дом.

Чтобы оценить разрушительные воздействия новой бомбы, на Семипалатинском полигоне построили город из промышленных и административных зданий. В общей сложности на поле имелось 190 различных сооружений. В этом испытании впервые были применены вакуумные заборники радиохимических проб, автоматически открывавшиеся под действием ударной волны. Всего к испытаниям РДС‑6с было подготовлено 500 различных измерительных, регистрирующих и киносъемочных приборов, установленных в подземных казематах и прочных наземных сооружениях. Авиационно‑техническое обеспечение испытаний — измерение давления ударной волны на самолет, находящийся в воздухе в момент взрыва изделия, забор проб воздуха из радиоактивного облака, аэрофотосъемка района осуществлялось специальной летной частью. Подрыв бомбы осуществлялся дистанционно, подачей сигнала с пульта, который находился в бункере.

Было решено произвести взрыв на стальной башне высотой 40 метров, заряд был расположен на высоте 30 метров . Радиоактивный грунт от прошлых испытаний был удален на безопасное расстояние, специальные сооружения были отстроены на своих же местах на старых фундаментах, в 5 метрах от башни был сооружен бункер для установки разработанной в ИХФ АН СССР аппаратуры, регистрирующей термоядерные процессы.

На поле установили военную технику всех родов войск. В ходе испытаний были уничтожены все опытные сооружения в радиусе до четырех километров. Взрыв водородной бомбы мог бы полностью разрушить город в 8 километров в поперечнике. Экологические последствия взрыва оказались ужасающими: на долю первого взрыва приходится 82% стронция‑90 и 75% цезия‑137.

Мощность бомбы достигла 400 килотонн, в 20 раз больше первых атомных бомб в США и СССР.

Уничтожение последнего ядерного заряда в Семипалатинске. Справка 31 мая 1995 г. на бывшем Семипалатинском полигоне был уничтожен последний ядерный заряд. Семипалатинский полигон был создан в 1948 г. специально для проведения испытаний первого советского ядерного устройства. Полигон располагался в северо-восточном Казахстане.

Работа по созданию водородной бомбы стала первой в мире интеллектуальной "битвой умов" поистине мирового масштаба. Создание водородной бомбы инициировало появление совершенно новых научных направлений — физики высокотемпературной плазмы, физики сверхвысоких плотностей энергии, физики аномальных давлений. Впервые в истории человечества было масштабно использовано математическое моделирование.

Работы по "изделию РДС‑6с" создали научно‑технический задел, который затем был использован в разработке несравнимо более совершенной водородной бомбы принципиально нового типа — водородной бомбы двухстадийной конструкции.

Водородная бомба сахаровской конструкции не только стала серьезным контраргументом в политическом противостоянии между США и СССР, но и послужила причиной бурного развития советской космонавтики тех лет. Именно после успешных ядерных испытаний ОКБ Королева получило важное правительственное задание разработать межконтинентальную баллистическую ракету для доставки к цели созданного заряда. В дальнейшем ракета, получившая название "семерка", вывела в космос первый искусственный спутник Земли , и именно на ней стартовал первый космонавт планеты Юрий Гагарин.

Материал подготовлен на основе информации открытых источников

Время: 0 с. Расстояние: 0 м (точно в эпицентре).
Инициация взрыва ядерного детонатора.

Время: < 0,0000001 c. Расстояние: 0 м. Температура: до 100 млн.°C.
Начало и ход ядерных и термоядерных реакций в заряде. Ядерный детонатор своим взрывом создаёт условия для начала термоядерных реакций: зона термоядерного горения проходит ударной волной в веществе заряда со скоростью порядка 5000 км/с (10 6 —10 7 м/с). Около 90% выделяющихся при реакциях нейтронов поглощается веществом бомбы, оставшиеся 10% вылетают наружу.

Время: < 10 −7 c. Расстояние: 0 м.
До 80% и более энергии реагирующего вещества трансформируется и выделяется в виде мягкого рентгеновского и жёсткого УФ-излучения с огромной энергией. Рентгеновское излучение формирует тепловую волну, которая нагревает бомбу, выходит наружу и начинает нагревать окружающий воздух.

Время: < 10 −7 c. Расстояние: 2 м. Температура: 30 млн.°C.
Окончание реакции, начало разлёта вещества бомбы. Бомба сразу исчезает из виду, и на её месте появляется яркая светящаяся сфера (огненный шар), маскирующая разлёт заряда. Скорость роста сферы на первых метрах близка к скорости света. Плотность вещества здесь за 0,01 с падает до 1% плотности окружающего воздуха; температура за 2,6 с падает до 7—8 тыс.°C, ~5 секунд удерживается и дальше снижается с подъёмом огненной сферы; давление через 2—3 с падает до несколько ниже атмосферного.

Время: 1,1×10 −7 c. Расстояние: 10 м. Температура: 6 млн.°C.
Расширение видимой сферы до ~10 м идёт за счёт свечения ионизованного воздуха под рентгеновским излучением ядерных реакций, а далее посредством радиационной диффузии самого нагретого воздуха. Энергия квантов излучения, покидающих термоядерный заряд, такова, что их свободный пробег до захвата частицами воздуха - порядка 10 м, и вначале сравним с размерами сферы; фотоны быстро обегают всю сферу, усредняя её температуру и со скоростью света вылетают из неё, ионизуя всё новые слои воздуха; отсюда одинаковая температура и околосветовая скорость роста. Далее, от захвата к захвату, фотоны теряют энергию, и длина их пробега сокращается, рост сферы замедляется.

Время: 1,4×10 −7 c. Расстояние: 16 м. Температура: 4 млн.°C.
В целом от 10−7 до 0,08 секунд идёт первая фаза свечения сферы с быстрым падением температуры и выходом ~1% энергии излучения, большей частью в виде УФ-лучей и ярчайшего светового излучения, способных повредить зрение у далёкого наблюдателя без образования ожогов кожи. Освещённость земной поверхности в эти мгновения на расстояниях до десятков километров может быть в сто и более раз больше солнечной.

Время: 1,7×10 −7 c. Расстояние: 21 м. Температура: 3 млн.°C.
Пары бомбы в виде клубов, плотных сгустков и струй плазмы, как поршень, сжимают впереди себя воздух и формируют ударную волну внутри сферы — внутренний скачок, отличающийся от обычной ударной волны неадиабатическими, почти изотермическими свойствами, и при тех же давлениях в несколько раз большей плотностью: сжимающийся скачком воздух сразу излучает большую часть энергии через пока прозрачный для излучений шар.
На первых десятках метров окружающие предметы перед налётом на них огневой сферы из-за слишком большой её скорости не успевают среагировать никак — даже практически не нагреваются, а, оказавшись внутри сферы под потоком излучения, испаряются мгновенно.

Время: 0,000001 c. Расстояние: 34 м. Температура: 2 млн.°C. Скорость 1000 км/с.
С ростом сферы и падением температуры энергия и плотность потока фотонов снижаются, и их пробега (порядка метра) уже не хватает для околосветовых скоростей расширения огневого фронта. Нагретый объём воздуха начал расширяться, и формируется поток его частиц от центра взрыва. Тепловая волна при неподвижном воздухе на границе сферы замедляется. Расширяющийся нагретый воздух внутри сферы наталкивается на неподвижный у её границы, и, начиная где-то с 36—37 м, появляется волна повышения плотности — будущая внешняя воздушная ударная волна; до этого волна не успевала появиться из-за огромной скорости роста световой сферы.

Время: 0,000001 c. Расстояние: 34 м. Температура: 2 млн.°C.
Внутренний скачок и пары бомбы находятся в слое 8—12 м от места взрыва, пик давления до 17000 МПа на расстоянии 10,5 м, плотность в ~4 раза больше плотности воздуха, скорость ~100 км/с. Область горячего воздуха: давление на границе 2500 МПа, внутри области до 5000 МПа, скорость частиц до 16 км/с. Вещество паров бомбы начинает отставать от внутреннего скачка по мере того, как всё больше воздуха в нём вовлекается в движение. Плотные сгустки и струи сохраняют скорость.

Время: 0,000034 c. Расстояние: 42 м. Температура: 1 млн.°C.
Условия в эпицентре взрыва первой советской водородной бомбы (400 кт на высоте 30 м), при котором образовалась воронка порядка 50 м диаметром и 8 м глубиной. В 15 м от эпицентра, или в 5—6 м от основания башни с зарядом, располагался железобетонный бункер со стенами толщиной 2 м для размещения научной аппаратуры сверху укрытый большой насыпью земли толщиной 8 м - разрушен.

Время: 0,0036 c. Расстояние: 60 м. Температура: 600 тыс.°C.
С этого момента характер ударной волны перестаёт зависеть от начальных условий ядерного взрыва и приближается к типовому для сильного взрыва в воздухе, т.е. такие параметры волны могли бы наблюдаться при взрыве большой массы обычной взрывчатки.
Внутренний скачок, пройдя всю изотермическую сферу, догоняет и сливается с внешним, повышая его плотность и образуя т.н. сильный скачок — единый фронт ударной волны. Плотность вещества в сфере падает до 1/3 атмосферной.

Время: 0,014 c. Расстояние: 110 м. Температура: 400 тыс.°C.
Аналогичная ударная волна в эпицентре взрыва первой советской атомной бомбы мощностью 22 кт на высоте 30 м сгенерировала сейсмический сдвиг, разрушивший имитацию тоннелей метро с различными типами крепления на глубинах 10, 20 и 30 м; животные в тоннелях на глубинах 10, 20 и 30 м погибли. На поверхности появилось малозаметное тарелкообразное углубление диаметром около 100 м. Сходные условия были в эпицентре взрыва «Тринити» (21 кт на высоте 30 м, образовалась воронка диаметром 80 м и глубиной 2 м).

Время: 0,004 c. Расстояние: 135 м. Температура: 300 тыс.°C.
Максимальная высота воздушного взрыва 1 Мт для образования заметной воронки в земле. Фронт ударной волны искривлён ударами сгустков паров бомбы.

Время: 0,007 c. Расстояние: 190 м. Температура: 200 тыс.°C.
На гладком и как бы блестящем фронте ударной волны образуются большие «волдыри» и яркие пятна (сфера как бы кипит). Плотность вещества в изотермической сфере диаметром ~150 м падает ниже 10% атмосферной.
Немассивные предметы испаряются за несколько метров до прихода огненной сферы («канатные трюки»); тело человека со стороны взрыва успеет обуглиться, а полностью испаряется уже с приходом ударной волны.

Время: 0,01 c. Расстояние: 214 м. Температура: 200 тыс.°C.
Аналогичная воздушная ударная волна первой советской атомной бомбы на расстоянии 60 м (52 м от эпицентра) разрушила оголовки стволов, ведущих в имитации тоннелей метро под эпицентром (см. выше). Каждый оголовок представлял собой мощный железобетонный каземат, укрытый небольшой грунтовой насыпью. Обломки оголовков обвалились в стволы, последние затем раздавлены сейсмической волной.

Время: 0,015 c. Расстояние: 250 м. Температура: 170 тыс.°C.
Ударная волна сильно разрушает скальные породы. Скорость ударной волны выше скорости звука в металле: теоретический предел прочности входной двери в убежище; танк расплющивается и сгорает.

Время: 0,028 c. Расстояние: 320 м. Температура: 110 тыс.°C.
Человек развеивается потоком плазмы (скорость ударной волны равна скорости звука в костях, тело разрушается в пыль и сразу сгорает). Полное разрушение самых прочных наземных построек.

Время: 0,073 c. Расстояние: 400 м. Температура: 80 тыс.°C.
Неровности на сфере пропадают. Плотность вещества падает в центре почти до 1%, а на краю изотермической сферы диамером ~320 м - до 2% атмосферной. На этом расстоянии в пределах 1,5 с нагрев до 30000°C и падение до 7000°C, ~5 с удержание на уровне ~6500°C и снижение температуры за 10—20 с по мере ухода огненного шара вверх.

Время: 0,079 c. Расстояние: 435 м. Температура: 110 тыс.°C.
Полное разрушение шоссейных дорог с асфальтовым и бетонным покрытием Температурный минимум излучения ударной волны, окончание первой фазы свечения. Убежище типа метро, облицованное чугунными тюбингами с монолитным железобетоном и заглублённое на 18 м, по расчёту, способно выдержать без разрушения взрыв (40 кт) на высоте 30 м на минимальном расстоянии 150 м (давление ударной волны порядка 5 МПа), испытано 38 кт РДС-2 на расстоянии 235 м (давление ~1,5 МПа), получило незначительные деформации, повреждения.
При температурах во фронте сжатия ниже 80 тыс.°C новые молекулы NO 2 больше не появляются, слой двуокиси азота постепенно исчезает и перестаёт экранировать внутреннее излучение. Ударная сфера постепенно становится прозрачной, и через неё, как через затемнённое стекло, некоторое время видны клубы паров бомбы и изотермическая сфера; в целом огненная сфера похожа на фейерверк. Затем, по мере увеличения прозрачности, интенсивность излучения возрастает, и детали как бы снова разгорающейся сферы становятся не видны.

Время: 0,1 c. Расстояние: 530 м. Температура: 70 тыс.°C.
Отрыв и уход вперёд фронта ударной волны от границы огненной сферы, скорость роста её заметно снижается. Наступает вторая фаза свечения, менее интенсивная, но на два порядка более длительная с выходом 99% энергии излучения взрыва, в основном в видимом и ИК-спектре. На первых сотнях метров человек не успевает увидеть взрыв и погибает без мучений (время зрительной реакции человека 0,1—0,3 с, время реакции на ожог 0,15—0,2 с).

Время: 0,15 c. Расстояние: 580 м. Температура: 65 тыс.°C. Радиация: ~100000 Гр.
От человека остаются обугленные осколки костей (скорость ударной волны - порядка скорости звука в мягких тканях: по телу проходит разрушающий клетки и ткани гидродинамический удар).

Время: 0,25 c. Расстояние: 630 м. Температура: 50 тыс.°C. Проникающая радиация: ~40000 Гр.
Человек превращается в обугленные обломки: ударная волна вызывает травматические ампутации, а подошедшая через долю секунды огненная сфера обугливает останки.
Полное разрушение танка. Полное разрушение подземных кабельных линий, водопроводов, газопроводов, канализации, смотровых колодцев. Разрушение подземных железобетонных труб диаметром 1,5 м с толщиной стенок 0,2 м. Разрушение арочной бетонной плотины ГЭС. Сильное разрушение долговременных железобетонных фортсооружений. Незначительные повреждения подземных сооружений метро.

Время: 0,4 c. Расстояние: 800 м. Температура: 40 тыс.°C.
Нагрев объектов до 3000°C. Проникающая радиация ~20000 Гр. Полное разрушение всех защитных сооружений гражданской обороны (убежищ), разрушение защитных устройств входов в метро. Разрушение гравитационной бетонной плотины ГЭС. ДОТы становятся небоеспособны на дистанции 250 м.

Время: 0,73 c. Расстояние: 1200 м. Температура: 17 тыс.°C. Радиация: ~5000 Гр.
При высоте взрыва 1200 м нагрев приземного воздуха в эпицентре перед приходом ударной волны до 900°C. Человек — стопроцентная гибель от действия ударной волны.
Разрушение убежищ, рассчитанных на 200 кПа (тип А-III, или класс 3). Полное разрушение железобетонных ДОТов сборного типа на дистанции 500 м по условиям наземного взрыва. Полное разрушение железнодорожных путей. Максимум яркости второй фазы свечения сферы, к этому времени она выделила ~20% световой энергии.

Время: 1,4 c. Расстояние: 1600 м. Температура: 12 тыс.°C.
Нагрев объектов до 200°C. Радиация - 500 Гр. Многочисленные ожоги 3—4 степени до 60-90% поверхности тела, тяжёлое лучевое поражение, сочетающиеся с другими травмами; летальность сразу или до 100% в первые сутки.
Танк отбрасывается на ~10 м и повреждается. Полное резрушение металлических и железобетонных мостов пролётом 30—50 м.

Время: 1,6 c. Расстояние: 1750 м. Температура: 10 тыс.°C. Радиация: ок. 70 Гр.
Экипаж танка погибает в течение 2-3 недель от крайне тяжёлой лучевой болезни.
Полное разрушение бетонных, железобетонных монолитных (малоэтажных) и сейсмостойких зданий 0,2 МПа, убежищ встроенных и отдельно стоящих, рассчитанных на 100 кПа (тип А-IV, или класс 4), убежищ в подвальных помещениях многоэтажных зданий.

Время: 1,9 c. Расстояние: 1900 м. Температура: 9 тыс.°C.
Опасные поражения человека ударной волной и отброс до 300 м с начальной скоростью до 400 км/ч; из них 100—150 м (0,3—0,5 пути) - свободный полёт, а остальное расстояние — многочисленные рикошеты о грунт. Радиация около 50 Гр — молниеносная форма лучевой болезни, 100% летальность в течение 6-9 суток.
Разрушение встроенных убежищ, рассчитанных на 50 кПа. Сильное разрушение сейсмостойких зданий. Давление 0,12 МПа и выше — вся городская застройка плотная и разряжённая превращается в сплошные завалы (отдельные завалы сливаются в один сплошной), высота завалов может составлять 3—4 м. Огненная сфера в это время достигает максимальных размеров (диаметром ~2 км), подминается снизу отражённой от земли ударной волной и начинает подъём; изотермическая сфера в ней схлопывается, образуя быстрый восходящий поток в эпицентре — будущую ножку гриба.

Время: 2,6 c. Расстояние: 2200 м. Температура: 7,5 тыс.°C.
Тяжёлые поражения человека ударной волной. Радиация ~10 Гр — крайне тяжёлая острая лучевая болезнь, по сочетании травм 100% летальность в пределах 1-2 недель. Безопасное нахождение в танке, в укреплённом подвале с усиленным железобетонным перекрытием и в большинстве убежищ ГО.
Разрушение грузовых автомобилей. 0,1 МПа — расчётное давление ударной волны для проектирования конструкций и защитных устройств подземных сооружений линий мелкого заложения метрополитена.

Время: 3,8 c. Расстояние: 2800 м. Температура: 7,5 тыс.°C.
Радиация 1 Гр — в мирных условиях и своевременном лечении неопасное лучевое поражение, но при сопутствующих катастрофе антисанитарии и тяжёлых физических и психологических нагрузках, отсутствии медицинской помощи, питания и нормального отдыха до половины пострадавщих погибают только от радиации и сопутствующих заболеваний, а по сумме повреждений (плюс травмы и ожоги) - гораздо больше.
Давление менее 0,1 МПа — городские районы с плотной застройкой превращаются в сплошные завалы. Полное разрушение подвалов без усиления конструкций 0,075 МПа. Среднее разрушение сейсмостойких зданий 0,08-0,12 МПа. Сильные повреждения железобетонных ДОТов сборного типа. Детонация пиротехнических средств.

Время: 6 c. Расстояние: 3600 м. Температура: 4,5 тыс.°C.
Средние поражения человека ударной волной. Радиация ~0,05 Гр — доза неопасна. Люди и предметы оставляют «тени» на асфальте.
Полное разрушение административных многоэтажных каркасных (офисных) зданий (0,05—0,06 МПа), укрытий простейшего типа; сильное и полное разрушение массивных промышленных сооружений. Практически вся городская застройка разрушена с образованием местных завалов (один дом — один завал). Полное разрушение легковых автомобилей, полное уничтожение леса. Электромагнитный импульс ~3 кВ/м поражает нечувствительные электроприборы. Разрушения аналогичны землетрясению силой 10 баллов.
Сфера перешла в огненный купол, как пузырь, всплывающий вверх, увлекая за собой столб из дыма и пыли с поверхности земли: растёт характерный взрывной гриб с начальной вертикальной скоростью до 500 км/час. Скорость ветра у поверхности к эпицентру ~100 км/ч.

Время: 10 c. Расстояние: 6400 м. Температура: 2 тыс.°C.
Окончание эффективного времени второй фазы свечения, выделилось ~80% суммарной энергии светового излучения. Оставшиеся 20% неопасно высвечиваются в течение порядка минуты с непрерывным понижением интенсивности, постепенно теряясь в клубах облака. Разрушение укрытий простейшего типа (0,035—0,05 МПа).
На первых километрах человек не услышит грохот взрыва из-за поражения слуха ударной волной. Отброс человека ударной волной на ~20 м с начальной скоростью ~30 км/ч.
Полное разрушение многоэтажных кирпичных домов, панельных домов, сильное разрушение складов, среднее разрушение каркасных административных зданий. Разрушения аналогичны землетрясению силой 8 баллов. Безопасно почти в любом подвале.
Свечение огненного купола перестаёт быть опасным, он превращается в огненное облако, с подъёмом растущее в объёме; раскалённые газы в облаке начинают вращаться в торообразном вихре; горячие продукты взрыва локализуются в верхней части облака. Поток запылённого воздуха в столбе движется в два раза быстрее скорости подъёма гриба, настигает облако, проходит насквозь, расходится и как бы наматывается на него, как на кольцеобразную катушку.

Время: 15 c. Расстояние: 7500 м.
Лёгкие поражения человека ударной волной. Ожоги третьей степени открытых частей тела.
Полное разрушение деревянных домов, сильное разрушение кирпичных многоэтажных домов 0,02—0,03 МПа, среднее разрушение кирпичных складов, многоэтажных железобетонных, панельных домов; слабое разрушение административных зданий 0,02—0,03 МПа, массивных промышленных сооружений. Воспламенение автомобилей. Разрушения аналогичны землетрясению силой 6 баллов, урагану 12 баллов со скоростью ветра до 39 м/с. Гриб вырос до 3 км над эпицентром взрыва (истинная высота гриба больше на высоту взрыва боеголовки, примерно на 1,5 км), у него появляется «юбочка» из конденсата паров воды в потоке тёплого воздуха, веером затягиваемого облаком в холодные верхние слои атмосферы.

Время: 35 c. Расстояние: 14 км.
Ожоги второй степени. Воспламеняется бумага, тёмный брезент. Зона сплошных пожаров; в районах плотной сгораемой застройки возможны огненный шторм, смерч (Хиросима, «Операция Гоморра»). Слабое разрушение панельных зданий. Вывод из строя авиатехники и ракет. Разрушения аналогичны землетрясению силой 4-5 баллов, шторму 9—11 балов со скоростью ветра 21—28,5 м/с. Гриб вырос до ~5 км, огненное облако светит всё слабее.

Время: 1 мин. Расстояние: 22 км.
Ожоги первой степени, в пляжной одежде возможна гибель.
Разрушение армированного остекления. Корчевание больших деревьев. Зона отдельных пожаров. Гриб поднялся до 7,5 км, облако перестаёт излучать свет и теперь имеет красноватый оттенок из-за содержащихся в нём окислов азота, чем будет резко выделяться среди других облаков.

Время: 1,5 мин. Расстояние: 35 км.
Максимальный радиус поражения незащищённой чувствительной электроаппаратуры электромагнитным импульсом. Разбиты почти все обычные и часть армированных стёкол в окнах— актуально морозной зимой плюс возможность порезов летящими осколками.
Гриб поднялся до 10 км, скорость подъёма ~220 км/ч. Выше тропопаузы облако развивается преимущественно в ширину.

Время: 4 мин. Расстояние: 85 км.
Вспышка похожа на большое и неестественно яркое Солнце у горизонта, может вызвать ожог сетчатки глаз, прилив тепла к лицу. Подошедшая через 4 минуты ударная волна ещё может сбить с ног человека и разбить отдельные стёкла в окнах.
Гриб поднялся свыше 16 км, скорость подъёма ~140 км/ч.

Время: 8 мин. Расстояние: 145 км.
Вспышка не видна за горизонтом, зато видно сильное зарево и огненное облако. Общая высота гриба - до 24 км, облако 9 км в высоту и 20—30 км в диаметре, своей широкой частью оно «опирается» на тропопаузу. Грибовидное облако выросло до макси-мальных размеров и наблюдается ещё порядка часа или более, пока не развеется ветрами и не перемешается с обычной облачностью. Из облака в течение 10—20 часов выпадают осадки с относительно крупными частицами, формируя ближний радиоактивный след.

Время: 5,5-13 часов. Расстояние: 300-500 км.
Дальняя граница зоны умеренного заражения (зона А). Уровень радиации на внешней границе зоны 0,08 Гр/ч; суммарная доза излучения 0,4—4 Гр.

Время: ~10 месяцев.
Эффективное время половинного оседания радиоактивных веществ для нижних слоёв тропической стратосферы (до 21 км); выпадение также идёт в основном в средних широтах в том же полушарии, где произведён взрыв.
===============

Айви Майк - первые атмосферные испытания водородной бомбы, проведенные США на атоллле Эниветок 1 ноября 1952 года.

65 лет назад Советский Союз взорвал свою первую термоядерную бомбу. Как устроено это оружие, что оно может и чего не может? 12 августа 1953-го в СССР взорвали первую «практичную» термоядерную бомбу. Мы расскажем об истории ее создания и разберёмся, правда ли, что такой боеприпас почти не загрязняет среду, но может уничтожить мир.

Идея термоядерного оружия, где ядра атомов сливаются, а не расщепляются, как в атомной бомбе, появилась не позднее 1941 года. Она пришла в головы физикам Энрико Ферми и Эдварду Теллеру. Примерно в то же время они стали участниками Манхэттенского проекта и помогли создать бомбы, сброшенные на Хиросиму и Нагасаки. Сконструировать термоядерный боеприпас оказалось намного сложнее.

Приблизительно понять, насколько термоядерная бомба сложнее атомной, можно и по тому факту, что работающие АЭС давно обыденность, а работающие и практичные термоядерные электростанции - все еще научная фантастика.

Чтобы атомные ядра сливались друг с другом, их надо нагреть до миллионов градусов. Схему устройства, которое позволило бы это проделать, американцы запатентовали в 1946 году (проект неофициально назывался Super), но вспомнили о ней только спустя три года, когда в СССР успешно испытали ядерную бомбу.

Президент США Гарри Трумэн заявил, что на советский рывок нужно ответить «так называемой водородной, или супербомбой».

К 1951 году американцы собрали устройство и провели испытания под кодовым названием «Джордж». Конструкция представляла собой тор - проще говоря, бублик - с тяжелыми изотопами водорода, дейтерием и тритием. Выбрали их потому, что такие ядра сливать проще, чем ядра обычного водорода. Запалом служила ядерная бомба. Взрыв сжимал дейтерий и тритий, те сливались, давали поток быстрых нейтронов и зажигали обкладку из урана. В обычной атомной бомбе он не делится: там есть только медленные нейтроны, которые не могут заставить делиться стабильный изотоп урана. Хотя на энергию слияния ядер пришлось примерно 10% от общей энергии взрыва «Джорджа», «поджиг» урана-238 позволил поднять мощность взрыва вдвое выше обычного, до 225 килотонн.

За счет дополнительного урана взрыв получился вдвое мощнее, чем с обычной атомной бомбой. Но на термоядерный синтез приходилось только 10% выделившейся энергии: испытания показали, что ядра водорода сжимаются недостаточно сильно.

Тогда математик Станислав Улам предложил другой подход - двухступенчатый ядерный запал. Его задумка заключалась в том, чтобы поместить в «водородной» зоне устройства плутониевый стержень. Взрыв первого запала «поджигал» плутоний, две ударные волны и два потока рентгеновских лучей сталкивались - давление и температура подскакивали достаточно, чтобы начался термоядерный синтез. Новое устройство испытали на атолле Эниветок в Тихом океане в 1952 году - взрывная мощность бомбы составила уже десять мегатонн в тротиловом эквиваленте.

Тем не менее и это устройство было непригодно для использования в качестве боевого оружия.

Чтобы ядра водорода сливались, расстояние между ними должно быть минимальным, поэтому дейтерий и тритий охлаждали до жидкого состояния, почти до абсолютного нуля. Для этого требовалась огромная криогенная установка. Второе термоядерное устройство, по сути увеличенная модификация «Джорджа», весило 70 тонн - с самолета такое не сбросишь.

СССР начал разрабатывать термоядерную бомбу позднее: первая схема была предложена советскими разработчиками лишь в 1949 году. В ней предполагалось использовать дейтерид лития. Это металл, твердое вещество, его не надо сжижать, а потому громоздкий холодильник, как в американском варианте, уже не требовался. Не менее важно и то, что литий-6 при бомбардировке нейтронами от взрыва давал гелий и тритий, что еще больше упрощает дальнейшее слияние ядер.

Бомба РДС-6с была готова в 1953 году. В отличие от американских и современных термоядерных устройств плутониевого стержня в ней не было. Такая схема известна как «слойка»: слои дейтерида лития перемежались урановыми. 12 августа РДС-6с испытали на Семипалатинском полигоне.

Мощность взрыва составила 400 килотонн в тротиловом эквиваленте - в 25 раз меньше, чем во второй попытке американцев. Зато РДС-6с можно было сбросить с воздуха. Такую же бомбу собирались использовать и на межконтинентальных баллистических ракетах. А уже в 1955 году СССР усовершенствовал свое термоядерное детище, оснастив его плутониевым стержнем.

Сегодня практически все термоядерные устройства - судя по всему, даже северокорейские - представляют собой нечто среднее между ранними советскими и американскими моделями. Все они используют дейтерид лития как топливо и поджигают его двухступенчатым ядерным детонатором.

Как известно из утечек, даже самая современная американская термоядерная боеголовка W88 похожа на РДС-6c: слои дейтерида лития перемежаются ураном.

Разница в том, что современные термоядерные боеприпасы - это не многомегатонные монстры вроде «Царь-бомбы», а системы мощностью в сотни килотонн, как РДС-6с. Мегатонных боеголовок в арсеналах ни у кого нет, так как в военном отношении десяток менее мощных зарядов ценнее одного сильного: это позволяет поразить больше целей.

Техники работают с американской термоядерной боеголовкой W80

Чего не может термоядерная бомба

Водород - элемент чрезвычайно распространенный, достаточно его и в атмосфере Земли.

Одно время поговаривали, что достаточно мощный термоядерный взрыв может запустить цепную реакцию и весь воздух на нашей планете выгорит. Но это миф.

Не то что газообразный, но и жидкий водород недостаточно плотный, чтобы начался термоядерный синтез. Его нужно сжимать и нагревать ядерным взрывом, желательно c разных сторон, как это делается двухступенчатым запалом. В атмосфере таких условий нет, поэтому самоподдерживающиеся реакции слияния ядер там невозможны.

Это не единственное заблуждение о термоядерном оружии. Часто говорят, что взрыв «чище» ядерного: мол, при слиянии ядер водорода «осколков» - опасных короткоживущих ядер атомов, дающих радиоактивное загрязнение, - получается меньше, чем при делении ядер урана.

Заблуждение это основано на том, что при термоядерном взрыве большая часть энергии якобы выделяется за счет слияния ядер. Это неправда. Да, «Царь-бомба» была такой, но только потому, что ее урановую «рубашку» для испытаний заменили на свинцовую. Современные двухступенчатые запалы приводят к значительному радиоактивному загрязнению.

Зона возможного тотального поражения «Царь-бомбой», нанесенная на карту Парижа. Красный круг - зона полного разрушения (радиус 35 км). Желтый круг - размер огненного шара (радиус 3,5 км).

Правда, зерно истины в мифе о «чистой» бомбе все же есть. Взять лучшую американскую термоядерную боеголовку W88. При ее взрыве на оптимальной высоте над городом площадь сильных разрушений практически совпадет с зоной радиоактивного поражения, опасного для жизни. Погибших от лучевой болезни будет исчезающе мало: люди погибнут от самого взрыва, а не радиации.

Еще один миф гласит, что термоядерное оружие способно уничтожить всю человеческую цивилизацию, а то и жизнь на Земле. Это тоже практически исключено. Энергия взрыва распределена в трех измерениях, поэтому при росте мощности боеприпаса в тысячу раз радиус поражающего действия растет всего в десять раз - мегатонная боеголовка имеет радиус поражения всего в десять раз больше, чем тактическая, килотонная.

66 миллионов лет назад столкновение с астероидом привело к исчезновению большинства наземных животных и растений. Мощность удара составила около 100 млн мегатонн - это в 10 тыс. раз больше суммарной мощности всех термоядерных арсеналов Земли. 790 тыс. лет назад с планетой столкнулся астероид, удар был мощностью в миллион мегатонн, но никаких следов хотя бы умеренного вымирания (включая наш род Homo) после этого не случилось. И жизнь в целом, и человек куда крепче, чем они кажутся.

Правда о термоядерном оружии не так популярна, как мифы. На сегодня она такова: термоядерные арсеналы компактных боеголовок средней мощности обеспечивают хрупкий стратегический баланс, из-за которого никто не может свободно утюжить другие страны мира атомным оружием. Боязнь термоядерного ответа - более чем достаточный сдерживающий фактор.

Литература