Использование цмс. Цитоплазматическая мужская стерильность, его генетическая основа и значение в селекции. Наследование по отцовской линии

Возникает вопрос, как получить гибридные семена, например, у кукурузы, сахарной свеклы, риса, томатов, если в пределах одного растения или даже одного цветка расположены женские и мужские элементы системы размножения и всегда присутствует возможность самоопыления. В этих случаях избежать процесс самоопыления возможно только двумя путями: на материнских формах удалить вручную мужские элементы цветка, продуцирующие пыльцу; сделать мужские соцветия стерильными. Первый путь очень трудоёмок, поэтому генетики начали поиск систем, определяющих мужскую стерильность растений.

В 1929 г. Ученик Н.И. Вавилова, отечественный селекционер и генетик М.И. Хаджинов нашёл в посевах кукурузы растения с мужской стерильностью, которые ничем не отличались от нормальных, полностью стерильных, т.е. не продуцирующих пыльцу. Эта система затем была детально изучена генетически, выявлены разные типы мужской стерильности. Один из них – цитоплазматическая мужская стерильность

(ЦМС) – был предложен и широко использован для получения гибридных семян у кукурузы, а затем и у многих других видов.

Схема использования ЦМС в селекции разработана в 30-х годах Родсом. Этот тип мужской стерильности характеризуется тем, что только взаимодействие особого типа цитоплазмы (S) и рецессивных генов ядра (rf) обусловливает мужскую стерильность.

В практике используют лишь гибридные семена первого поколения от скрещивания двух линий, простого гибрида и линии или двух простых гибридов. Второе и последующие поколения в производственных посевах не используются, так как гибриды расщепляются на исходные формы и эффект гетерозиса исчезает. В связи с этим при использовании гетерозиса у растений организовано семеноводство в специальных хозяйствах, фермах, где получают только семена первого поколения и продают их хозяйствам, фермерам и т.д. Так как урожайность гетерозисных гибридов значительно (на 20–30%) выше сортов, то затраты на семеноводство гибридных семян с лихвой окупаются. В растениеводстве гетерозис широко используется у кукурузы, сорго, сахарной свеклы, риса томатов и других видов.

Открытие явления гетерозиса было крупнейшим событием в генетике и селекционной практике.

Статьи и публикации:

Популяционная структура вида
Вид представляет собой в действительности гораздо более сложную систему, чем просто совокупность скрещивающихся сходных друг с другом особей. Внутри вида существует сложная иерархическая система территориальных популяций, которая является...

Ядерные поровые комплексы
Ядерная оболочка клеток млекопитающих содержит 3-4 тысячи пор (примерно 10 пор на 1 квадратный мкм). Через ядерные поры происходит обмен веществами между ядром и цитоплазмой. Действительно, РНК, синтезируемые в ядре, а также рибосомные су...

Особенности питания рыб
Эмбриональный период развития рыбы начинается с момента оплодотворения икринки. Сначала происходит дробление зародышевого диска, увеличение количества клеток - это стадия морулы. Через 12-16 ч после осеменения формируются два слоя клеток, ...

Мужская стерильность бывает при отсутствии пыльцы или неспособны ее к оплодотворению и проявляется в трех основных формах:

· Мужские генеративные органы – тычинки – совершенно не развиваются (наблюдается у растений некоторых видов табака);

· Пыльники в цветках образуются, но пыльца их нежизнеспособна (у кукурузы);

· В пыльниках образуется нормальная пыльца, но они не растрескиваются и пыльца не попадает на рыльца; это очень редкое явление наблюдается иногда у некоторых сортов томата.

Мужская стерильность генетически может обуславливаться генами стерильности ядра и взаимодействием ядерных генов и плазмогенов. В соответствии с этим различают два вида мужской стерильности: ядерную, или генную, и цитоплазматическую.

Ядерная стерильность вызывается мутациями хромосомных генов ms. В связи с тем, что гены стерильности рецессивные, а гены фертильности доминантные, при этом типе наследования стерильности от скрещивания стерильности растений с фертильными все растения F 1 бывают фертильными (msms х MsMs Msms), а в F 2 происходит расщепление на фертильные и стерильные формы в отношении 3:1 в последующих поколениях число стерильных растений от такого скрещивания непрерывно уменьшается. В настоящее время разрабатываются приемы использования генной стерильности для получения гетерозисных гибридов хлопчатника, подсолнечника и некоторых других культур.

Цитоплазматическая мужская стерильность (ЦМС) основана на взаимодействии между генами ядра (хромосом) и генами или детерминаторами, находящимися в цитоплазме.

Причина ЦМС заключена в цитоплазме.

Цитоплазму, содержащую гены мужской стерильности, обозначают символом S, цитоплазму, не обусловливающую мужскую стерильность, - символом N.

Действие «стерильной» цитоплазмы зависит от присутствия в ядре клетки аллелей генов - восстановителей фертильности, обозначаемых символом Rf-rf.

Стерильная цитоплазма S вызывает стерильность мужских генеративных органов цветка, если в ядре клетки присутствует рецессивный аллель rf гена - восстановителя фертильности.

Доминантный аллель Rf подавляет (ингибирует) действие цитоплазматических генов мужской стерильности.

Таблица 7 – Наследование ЦМС

Таким образом, в зависимости от генов, контролирующих мужскую фертильность, возможны следующие типы идиотипической конституции самоопыленных линий:

Фертильные линии и сорта, обладающие способностью сохранять при скрещивании со стерильной формой эту стерильность у потомства, называют закрепителями стерильности .

Линии и сорта, восстанавливающие плодовитость потомства растений с ЦМС, получили название восстановителей фертильности

Имеются формы промежуточного типа, которые при скрещивании со стерильными растениями дают потомство, состоящее из смеси стерильных и фертильных растений в определенных количественных соотношениях Их называют полувосстановителями фертильности.

Типы ЦМС

Для кукурузы были установлены три типа ЦМС – молдавский (М), техасский (Т) и бразильский (С-тип). Применение преимущественно одного типа ЦМС нежелательно, так как однообразие гибридов по какому-либо признаку, в том числе и по цитоплазме, увеличивает опасность массового распространения болезней. Так, к 1970 г. в США 85 % всех площадей под кукурузой было занято растениями с Т-типом ЦМС. Это способствовало широкому распространению вредоносной специфической расы южного гельминтоспориоза (Helminthosporium maidis), к которой растения с Т-цитоплазмой оказались особенно восприимчивыми вследствие специфического строения их митохондрий. После эпифитотии этой болезни в 1970 г. в США, а также в других странах отказались от использования ЦМС Т-типа, вернувшись к производству гибридных семян путем обрывания метелок на участках гибридизации. Одновременно этот опыт послужил стимулом для расширения работ с ЦМС. Был выделен и включен в селекционную работу новый тип ЦМС - С-тип, источником которой стал сорт местной кукурузы из Бразилии. Разрабатываются методики использования в семеноводстве генной мужской стерильности (ГМС).

Молдавский тип ЦМС

Метелки в большей или меньшей степени образуют пыльники, которые нередко выходят из колосков, но не раскрываются. В них формируется нежизнеспособная сморщенная пыльца. Однако иногда под влиянием определенных внешних условий у растений этого типа может в небольшом количестве образоваться и жизнеспособная пыльца.

Техасский тип ЦМС

Проявление стерильности в меньшей степени подвержено влиянию условий среды. Да и сам этот признак выражен значительно больше - пыльники сильно дегенерированы, реже выходят из колосков, а если и выходят, то не раскрываются.

Боливийский тип ЦМС

Пригоден только для производства простых гибридов, так как экологическая стабильность мужской стерильности у него достаточно слаба.

Широкое использование ЦМС в семеноводстве ряда культурных растений оказалось возможным благодаря тому, что она обычно не вызывает снижения продуктивности растений. В то же время у кукурузы ЦМС приводит к некоторому уменьшению высоты растений в завершающие фазы развития в основном за счет длины ножки метелки, к снижению высоты прикрепления початка, общего числа листьев на главном стебле и их количества от узла прикрепления початка, числа веточек метелок. В определенных условиях выращивания, в частности при разной густоте стояния растений, стерильная цитоплазма может влиять и на продуктивность гибридов.

В ряде случаев, когда стерильность создается на цитоплазме далекого или дикого вида при отдаленной гибридизации, не всегда удается путем насыщающих скрещиваний добиться передачи ЦМС без изменения урожайности и других признаков и свойств насыщающего вида.


Похожая информация.


Благодаря цитоплазматической мужской стерильности гибриды широко распространились в производстве. Был получен огромный экономический эффект, так как значительно снизились затраты ручного труда на производство семян гибридов. ЦМС была открыта Родсом в 1931 г. и М. И. Хаджиновым в 1932 г. Первая попытка практического использования ее в селекции кукурузы принадлежит Ричи и Уоллесу, но она окончилась неудачей, так как источник стерильности, открытый Родсом, не проявил стабильности по этому признаку. И только после открытия Мангельсдорфом и Дженкинсом новых источников стерильности работа в этом направлении была возобновлена. Первые простые гибриды на стерильной основе в США были получены Джонсом и Мангельсдорфом в 1947-1948 гг.

Практическое использование ЦМС-системы у кукурузы предполагает следующие факторы.

1. Создание гибридов, соответствующих по урожайности и другим показателям.

2. Перевод на стерильную основу материнских форм гибрида (линия, простой гибрид, сорт) - создание стерильных аналогов.

3. Передача восстанавливающей способности линиям или другим формам, использующимся в качестве отцовских,- создание аналогов - восстановителей фертильности.

Методы получения гибридов были описаны выше, здесь же излагаются способы создания стерильных аналогов и аналогов - восстановителей фертильности. Генетическое исследование ЦМС-системы показало, что стерильность пыльцы проявляется только при сочетании «стерильной» цитоплазмы с генами rf в рецессивном состоянии. В доминантном же состоянии гены Rf тормозят действие «стерильной» цитоплазмы, не изменяя ее структуры.

Согласно гипотезе Джонса, ЦМС контролируется плазменно-ядерной системой, включающей плазмогены (специфические элементы цитоплазмы, способные к саморепродукции и передающиеся через цитоплазму материнской половой клетки), и генами, локализованными в хромосомах.

В настоящее время описано несколько типов стерильности кукурузы, но в нашей стране используются два: техасский и молдавский. Последний идентичен типу стерильности, известному в США под индексом 5, или 118 В А.

Молдавский и техасский типы стерильности различаются между собой по специфической реакции на гены - восстановители фертильности. Например, установлено, что линия ВИР 44 является закрепителем стерильности для форм с молдавским типом стерильности и восстановителем фертильности для ЦМС техасского типа. У растений с техасским типом стерильности пыльники полностью стерильные, а растения молдавского типа стерильности могут иметь в пыльниках небольшой процент фертильных пыльцевых зерен, но пыльники не вскрываются. Чаще встречается молдавский тип стерильности.

Перевод самоопыленных линий на стерильную основу (создание стерильных аналогов) осуществляется методом беккроссов. При этом селекционер должен учитывать, что в ряде случаев «стерильная» цитоплазма оказывает угнетающее действие на развитие таких признаков, как высота прикрепления верхнего початка, длина метелки, общее число листьев и некоторых других. Например, стерильный аналог самоопыленной линии Иллинойс 90 уменьшает высоту растений на 12% по сравнению с фертильной формой. Установлено, что ЦМС молдавского типа вызывает меньшую депрессию, чем ЦМС техасского типа.

Создание стерильных аналогов облегчается тем, что большинство созданных самоопыленных линий (94-96%) относится к закрепителям стерильности.

Сравнение продуктивности стерильных и фертильных аналогов простых, двойных и сортолинейных гибридов показало, что перевод гибридов на стерильную основу не сказывается на их продуктивности.

Селекционер должен знать, что сравнительная ценность техасского и молдавского типов ЦМС в гибридах одинакова. Поэтому он может выбирать наиболее удобный для него источник ЦМС при переводе создаваемых гибридов на стерильную основу.

В программе селекции кукурузы с использованием ЦМС создание аналогов -восстановителей фертильности занимает центральное место. Это объясняется тем, что среди самоопыленных линий, используемых селекционерами, линии, восстанавливающие фертильность, встречаются крайне редко (4-6%).

Аналоги - восстановители фертильности создаются, как правило, методом беккроссов или выделяются из различных популяций. При насыщающих скрещиваниях доминантные гены - восстановители фертильности (Rf) переносятся в генотип линий, которым стремятся придать восстановительную способность. Существует несколько схем создания аналогов - восстановителей фертильности. Наиболее распространены из них: создание таких аналогов на фертильной основе, на стерильной основе (метод Э. Экхарда и М. И. Хаджинова) и комбинированная схема, предложенная М. И. Хаджиновым и Э. И. Вахрушевой.

Ниже приводятся наиболее употребительные схемы создания аналогов-восстановителей фертильности (по М. И. Хаджинову).

I. Создание аналогов - восстановителей фертильности на фертильной, основе.

1. Скрещивание восстановителя фертильности В с линией А: В×А.

2. Первое насыщающее скрещивание: (В×А)×А.

3. Второе насыщающее скрещивание [(В×А) ×А] ×Л.

Одновременно со вторым беккроссом каждое растение, участвующее в работе, проверяют на восстановительную способность, опыляя его пыльцой стерильную форму. Для дальнейшего насыщения используют растения, обладающие восстановительной способностью. В дальнейшем насыщающие скрещивания с параллельной проверкой на восстановительную способность повторяют 4-5 раз, а затем выделенные формы дважды подвергают самоопылению. При самоопылении растения также проверяют на восстановительную способность путем скрещивания со стерильным анализатором. Необходимость проведения постоянно большого числа анализирующих скрещиваний очень затрудняет работу по этой схеме. Поэтому более удобна следующая схема.

II. Создание самоопыленных аналогов - восстановителей фертильности на стерильной основе.

1. Скрещивание стерильной формы (Тс) с восстановителем (В): Тс×В.

2. Скрещивание фертильного гибрида (Тс×В) с линией А, по которой стремятся создать аналог - восстановитель фертильности.

3. Второе скрещивание фертильных растений гибрида с линией А: [(Тс×В)×А] ×А.

4. Третье скрещивание фертильных растений с линией А: {[(Тс×В)×А]×А}×А.

5. Четвертое скрещивание фертильных растений с линией А: /{[(Тс×В)×А]×А}×А/×А.

6. Самоопыление фертильных растений (Тс×В)×А4.

7. Повторное самоопыление фертильных растений (Тс×В)×А4.

8. Отбор потомств, не выщепляющих стерильные растения.

При проведении работ по этой схеме полностью исключается необходимость анализирующих скрещиваний со стерильным анализатором, так как для работы отбирают только фертильные формы со стерильной цитоплазмой, т. е. формы, несущие гены - восстановители фертильности.

Если для линии, которой хотят придать свойство восстановления, уже создан стерильный аналог (Атс), схема работы несколько упрощается.

Самоопыление нужно проводить до прекращения выщепления стерильных растений. Недостатком этой схемы является пониженная продуктивность пыльцеобразования создаваемых аналогов - восстановителей фертильности на стерильной основе. Особенно резко это проявляется в неблагоприятных условиях выращивания. Для исправления данного недостатка и была предложена комбинированная схема.

III. Комбинированная схема создания аналогов- восстановителей фертильности. После шести насыщающих скрещиваний на стерильной цитоплазме порядок скрещиваний изменяют. В качестве материнской формы используют обычный фертильный аналог самоопыленной линии, по которой создают аналог - восстановитель фертильности, а в качестве отцовской - насыщенную гетерозиготную по восстановительной способности линию на стерильной цитоплазме. Полученные растения дважды подвергают самоопылению с одновременной проверкой генотипа на стерильном тестере. Такой порядок работы позволяет выделить гомозиготную линию - восстановитель на фертильной основе.

Перспективно в селекции кукурузы создание универсальных аналогов - восстановителей фертильности. Впервые на их существование указал в 1965 г. Джонс, выделивший по этому признаку линии NC77, Ку21 и Тх-127С.

Возможность создания универсальных восстановителей фертильности основывается на следующих положениях.

1. Восстановление фертильности в цитоплазме техасского типа обусловливается действием двух комплементарных генов - Rf1 и Rf2 в доминантном состоянии, а в цитоплазме молдавского типа доминантным геном Rf3.

2. Большинство форм кукурузы несет ген Rf2, и разница между фертильной и стерильной формой при техасском типе стерильности заключается в том, имеется или отсутствует ген Rf1.

3. Гены Rf1 и Rf3 находятся в разных хромосомах и легко могут быть совмещены в одной особи.

При переводе семеноводства гибридов на стерильную основу по схеме полного восстановления селекционеру иногда приходится менять порядок сочетания линий в гибриде, когда по отдельным линиям, входящим в состав гибрида, невозможно создать стерильный аналог или аналог-восстановитель.

Подобные преобразования пришлось проделать и с гибридом Краснодарский 309 [(W 155× W 23) × (ВИР 38× Сr 25)], так как линия W 155 - частичный восстановитель фертильности и невозможно создать ее стерильный аналог. В связи с этим линию W 155 целесообразно было использовать в качестве отцовской формы. Новая формула гибрида Краснодарский 309Т: [(W 23Т × ВИР 38)×(W 155 × Сr 25)]. Испытания показали, что такая перестановка не сказалась на продуктивности гибрида. Таким образом, наблюдения показывают возможность изменения в некоторых случаях формул простых и двойных межлинейных гибридов без ущерба для их урожайности.

148. Что такое цитоплазматическая мужская стерильность?

Одним из самых ярких примеров цитоплазматической наследственности можно считать цитоплазматическую мужскую стерильность (ЦМС), обнаруженную у многих растений - кукурузы, лука, свеклы, льна.

Рассмотрим ЦМС на примере кукурузы. Кукуруза - однодомное растение, женские цветки которого собраны в початок, а мужские - в метелку. Иногда в метелке могут быть недоразвитые пыльники со стерильной пыльцой. Стерильность пыльцы определяется некоторыми особенностями цитоплазмы. Опыление растений с ЦМС пыльцой, взятой от других растений, дает в потомстве формы также со стерильной пыльцой. Следовательно, признак мужской стерильности передается по материнской линии. Даже когда все 10 пар хромосом стерильного по пыльце растения замещены хромосомами растений с нормальной пыльцой, мужская стерильность сохраняется. Цитоплазму, обусловливающую мужскую стерильность, можно обозначить через цит S , а нормальную цитоплазму - через цит N . Генетический анализ показал, что генотип растения также влияет на стерильность пыльцы. Цитоплазма цит S обусловливает стерильность только при наличии в генотипе рецессивных генов rfrf в гомозиготном состоянии - цит S rfrf. При цит S RfRf или цит S Rfrf растения имеют нормальную фертильную пыльцу. Значит, ген Rf способен восстанавливать фертильность пыльцы. Подобные отношения между цитоплазмой и генотипом позволили разработать методику и составить схему получения межлинейных гибридов кукурузы с использованием ЦМС (рис. 37):

Используемые линии кукурузы относятся к так называемым "закрепителям" стерильности и "восстановителям" фертильности. Фертильные линии и сорта, сохраняющие при скрещивании со стерильной формой стерильность у потомства, называются "закрепителями" стерильности, а линии и сорта, восстанавливающие плодовитость потомства растений с ЦМС, - "восстановителями" фертильности. У кукурузы известно два типа мужской стерильности. Изучение образования пыльцы у стерильных форм кукурузы показало, что видимые нарушения спорогенеза происходят на различных этапах: у одних дегенерация завершается на стадии одноядерной пыльцы, у других - двуядерной. Большое влияние на проявление стерильности оказывают внешние условия: температура, влажность почвы и воздуха, а также продолжительность дня. Сорта кукурузы с тем или иным типом ЦМС имеют различную чувствительность к факторам внешней среды. У растений с молдавским типом ЦМС метелки образуют пыльники, которые не раскрываются, пыльца в них нежизнеспособная, хотя при определенных условиях может образоваться и жизнеспособная. У растений с техасским типом ЦМС проявление стерильности в меньшей степени подвержено влиянию внешних воздействий, а признак выражен значительно: пыльники сильно дегенерированы и никогда не раскрываются. В селекции используются оба типа ЦМС.

Понятие и виды цитоплазматической мужской стерильности

Мужская стерильность - отсутствие образования пыльцы у растений может быть следствием ядерных мутаций или быть связано с цитоплазматическими факторами наследственности. Мужскую стерильность у лука впервые обнаружил американский генетик Д. Джонс в 1924 г. Для получения гибридных семян цитоплазматическая мужская стерильность (ЦМС) является предпочтительной по сравнению с генетической ядерной мужской стерильностью, потому что характеристики ЦМС не подвергаются расщеплению. Например, генетическая ядерная мужская стерильность обычно кодируются одним рецессивным геном, поэтому для экспрессии мужского стерильного фенотипа требуется гомозиготность. Для распространения растений с генетической ядерной мужской стерильностью гомозиготные рецессивные стерильные мужские растения должны быть скрещены с изогенной мужской фертильной линией, гетерозиготной по гену мужской стерильности. Такие скрещивания приводят к образованию определенного процента мужских фертильных растений (50% в системе с одним геном), которые должны быть удалены с поля сразу же, как только может быть идентифицирована их фертильность, чтобы поддержать эффективность желаемой популяции с мужской стерильностью. Удаление с поля мужских фертильных растений представляет собой тяжелый и дорогостоящий труд. Таким образом, расщепление ядерных генов сильно ограничивает пригодность генетической ядерной мужской стерильности для получения гибридных семян.

Цитоплазматическая мужская стерильность экспрессируется во всем потомстве гибридного скрещивания между родителями ЦМС-инбредной линии и линии с мужской фертильностью. По этой причине для получения гибридных семян предпочтителен способ, основанный на использовании ЦМС - характеристик.

Создание гетерозисных гибридов лука с использованием ЦМС растений

Широкое распространение гибридов F 1 в товарном производстве лука репчатого в Японии, Нидерландах и других странах, а также исследования, проведенные в России, показывают большое преимущество гибридов в продуктивности, выравненности гибридов по вызреванию, размеру, форме и качеству луковицы по сравнению с сортами. По данным разных исследователей, повышение продуктивности гибридов составляло 39-52%. Так как получение гибридных семян при искусственном опылении затруднено из-за кастрации цветков и в производственных масштабах невозможно, наиболее целесообразным является создание гибридов на основе мужской стерильности. В селекционной практике наиболее распространенным способом получения таких гибридов является использование в качестве материнских форм линий, обладающих цитоплазматической мужской стерильностью (ЦМС).

В России наиболее успешно проводят исследования в этом плане ВНИИР, ВНИИССОК, в Приднестровском НИИСХ республики Молдова, где созданы стерильные линии сортов Восточный 61, Стригуновскиц, Каба и др. и на их основе созданы перспективные гетерозисные гибриды.

Растения с ЦМС можно найти практически в любом сорте лука, при этом количество их может колебаться от 0,1% до 30%. У семенных растений лука встречаются 2 типа мужской стерильности. У первого тип раскрытый цветок по внешнему виду почти не отличается от цветка с фертильной пыльцой, за исключением того, что столбик у него растет несколько быстрее тычинок. Тычиночные нити короткие, пыльники светло-зеленые, слабо выполненные, усыхают не вскрываясь.

У растений второго типа цветок практически остается в бутоне, а столбик быстро выходит наружу из нераскрытого цветка. Пыльники не имеют жизнеспособной пыльцы, зонтики отличаются по яркости окраски от зонтиков растений с фертильной пыльцой. Обнаружить растения с мужской стерильностью довольно легко, но гораздо труднее сохранить и закрепить признак ЦМС в потомстве этих растений, т.е. создать стерильные линии - исходный материал для создания гибридов F 1 .

Поэтому работа по созданию гетерозисных гибридов F 1 состоит из следующих этапов:

1) выявление растений с ЦМС;

2) закрепление признака ЦМС;

3) получение гетерозисных гибридов.

Установлено, что пыльцевая стерильность лука обусловлена взаимодействием цитоплазматического фактора S с рецессивным геном mS в гомозиготном состоянии msms. В присутствии нормальной цитоплазмы N или доминантного гена MS пыльца развивается нормально, и растение будет фертильно. Растение со стерильной пыльцой может дать потомство только в случае опыления пыльцой фертильного растения. В сортовой селекции лука растения с фертильной пыльцой могут быть представлены такими сочетаниями цитоплазмы и генов, как NMSMS, Nmsms, SMSMS, SMSms, Smsms. При опылении ими растения с генотипом Smsms наследование стерильности будет различным. Закрепляется ЦМС только в том случае, если растение с генотипом Ssmsm опыляется пыльцой с растения с генотипом Nmsms. Потомство от такого растения должно быть на 100% со стерильной пыльцой. При других сочетаниях цитоплазмы фертильность пыльцы в потомстве восстанавливается полностью или частично.

Процесс закрепления мужской стерильности в настоящей разработке довольно сложен и продолжителен. Во ВНИИР разработана единая схема селекционного процесса получения стерильных линий в течение 5 генераций (для двулетней культуры):

1-й год - выявляются стерильные растения с большим количеством цветочных стрелок, каждая из которых опыляется под изолятором фертильным соцветием отдельного отцовского растения-опылителя.

2-й год - высевают по семьям семена с каждой стрелки стерильного растения и с каждой самоопыленной стрелки фертильного растения.

3-й год - высаживают стерильные и фертильные семенники по семьям отдельно. Проверяют материнские растения на стерильность. Оставляют семьи со 100%-ной стерильностью и опыляют растения соответствующими отцами-опылителями. Растения отцов-опылителей самоопыляются.

4-й год высевают семена раздельно по стерильным линиям и отцам-опылителям.

5-й год все семенники высаживаются вместе, семена с отцовских и материнских растений собирают отдельно.

В практической работе линию со 100%-ной стерильностью растений поддерживать трудно из-за модифицирующего действия других генов, которое обуславливает появление некоторого числа фертильных растений, но их количество недолжно превышать 5%.

Для получения гетерозисных гибридов F 1 необходим подбор лучших сортов-опылителей. В качестве отцовских компонентов используют доноры наиболее ценных хозяйственных признаков: устойчивости к болезням, скороспелости, лежкости, округлой формы. Оценку комбинационной способности линий ведут методом топкросса и она возможна на ранних этапах, так как для этого не нужно иметь много маточников. Для ускорения работ по подбору отцов-опылителей их оценивают на комбинационную способность с использованием инцухт-линий. Наиболее эффективен при этом метод поликросса. Выделявшиеся в обоих случаях наиболее ценные линии и сорта по общей комбинационной способности оцениваются в дальнейшем на специфическую комбинационную способность методом диаллельных скрещиваний .

Физика