Методы разделения белков на фракции биохимия. Разделение белков (фракционирование). Ионнообменная хроматография на СМ-целлюлозе

Вопрос 1.Биологическая роль белко B и пептидов. Простые и сложные белки. Первичная, вторичная структуры белка, химические связи их стабилизирующие. Особенности состава и структуры глобулярных и фибриллярных белков (кератин, коллаген, эластин).

БЕЛКИ или ПРОТЕИНЫ - это высокомолекулярные азотсодержащие органические вещества, линейные гетерополимеры, структурным компонентом которых являются аминокислоты, связанные пептидными связями. Пептидом обычно называют олигомер, состоящий не более чем из 50 аминокислот.

Структурообразующие функции. Структурные белки отвечают за поддержание формы и стабильности клеток и тканей (коллаген, гистоны- организация укладки ДНК в хроматине, Транспортные функции(гемоглобин)

Защитные функции. (иммуноглобулин G ,который на эритроцитах образует комплекс с мембранными гликолипидами).

Регуляторные функции: белки осуществляют функции сигнальных веществ (гормонов) и гормональных рецепторов(соматотропин, инсулин)

Ферментативные (алкогольдегидрогеназа, глутаминсинтетаза)

Двигательные функции. Взаимодействие актина с миозином ответственно за мышечное сокращение и другие формы биологической подвижности

Запасные функции. В растениях содержатся запасные белки, являющиеся ценными пищевыми веществами. В организмах животных мышечные белки служат резервными питательными веществами, которые мобилизуются при крайней необходимости.

Белки: простые (только из а/к), сложные(состоят из апопротеина - белковой части, и простетической части – металла, органические молекулы с низкой молек. массой)

ПРОСТРАНСТВЕННАЯ ОРГАНИЗАЦИЯ БЕЛКОВОЙ МОЛЕКУЛЫ

В основе каждого белка лежит полипептидная цепь. Она не просто вытянута в пространстве, а организована в трехмерную структуру. Поэтому существует понятие о 4-х уровнях пространственной организации белка, а именно - первичной, вторичной, третичной и четвертичной структурах белковых молекул.

Первичная структура белка - последовательность аминокислотных фрагментов, прочно (и в течение всего периода существования белка) соединенных пептидными связями. Существует период полужизни белковых молекул - для большинства белков около 2-х недель. Если произошел разрыв хотя бы одной пептидной связи, то образуется уже другой белок.

Вторичная структура - это пространственная организация стержня полипептидной цепи. Существуют 3 главнейших типа вторичной структуры:

1) Альфа-спираль - имеет определенные характеристики: ширину, расстояние между двумя витками спирали. Для белков характерна правозакрученная спираль. В этой спирали на 10 витков приходится 36 аминокислотных остатков. У всех пептидов, уложенных в такую спираль, эта спираль абсолютно одинакова. Фиксируется альфа-спираль с помощью водородных связей меsfsdasdwGjkKjlllду NH-группами одного витка спирали и С=О группами соседнего витка. Эти водородные связи расположены параллельно оси спирали и многократно повторяются, поэтому прочно удерживают спиралеобразную структуру. Более того, удерживают в несколько напряженном состоянии (как сжатую пружину).

Бета-складчатая структура - или структура складчатого листа. Фиксируется также водородными связями между С=О и NH-группами. Фиксирует два участка полипептидной цепи. Эти цепи могут быть параллельны или антипараллельны. Если такие связи образуются в пределах одного пептида, то они всегда антипараллельны, а если между разными полипептидами, то параллельны.

3) Нерегулярная структура - тип вторичной структуры, в котором расположение различных участков полипептидной цепи относительно друг друга не имеет регулярного (постоянного) характера, поэтому нерегулярные структуры могут иметь различную конформацию.

Классификация белков по форме молекул

2 группы: глобулярные и фибриллярные. К глобулярным относятся белки, соотношение продольной и поперечной сторон которых не превышает 1:10, а чаше составляет 1:3 или 1:4, т.е. белковая молекула имеет форму эллипса. Большинство индивидуальных белков человека относят к глобулярным белкам. Они имеют компактную структуру и многие из них за счёт удаления гидрофобных радикалов внутрь молекулы, хорошо растворимы в воде

Фибриллярные белки имеют вытяную структуру, в которой соотношение продольной и поперечной осей составляет более 1:10. К фибриллярным белкам относят коллагены, эластин, кератин, выполняющие в организме человека структурную функцию, а также миозин, участвующий в мышечном сокращении и фибрин - белок свёртывающей системы крови.

Строение и функции коллагенов

Коллагены - семейство родственных фибриллярных белков, секретируемых клетками соединительной ткани. Коллагены - самые рапространенные белки не только межклеточно го матрикса, но и организма в целом, они составляют около 1/4 всех белков организма человека. В межклеточном матриксе молекулы коллагена образуют полимеры, называемые фибриллами коллагена. Фибриллы коллагена обладают огромной прочностью и практически нерастяжимы. Именно поэтому большое количество коллагеновых волокон, состоящих из коллагеновых фибрилл, входит в состав кожи, сухожилий, хрящей и костей.

Необычные механические свойства коллагенов связаны с их первичной и пространственной структурами. Молекулы коллагена состоят из трёх полипептидных цепей, называемых а-цепями. Коллаген имеет в своём составе 1000 аминокислотных остатков. Первичная структура а-цепей коллагена необычна, так как каждая третья аминокислота в полипептидной цепи представлена глицином, до 1/4 аминокислотных остатков составляют пролин или 4-гидроксипролин, около 11% - аланин. В коллагене отсутствуют такие аминокислоты, как цистеин и триптофан, а гистидин, метионин и тирозин находятся лишь в очень небольшом количестве. В составе первичной структуры а-цепи коллагена содержится также необычная аминокислота - гидрокси-лизин. Полипептидную цепь коллагена можно представить как последовательность триплетов Гли-X-Y, где X и Y могут быть любыми аминокислотами, но чаще в положении X стоит пролин, а в положении Y - гидроксипролин или гидроксилизин. Каждая из этих аминокислот имеет большое значение для формирования коллагеновых фибрилл.

Пролин благодаря своей структуре вызывает изгибы в полипептидной цепи, стабилизируя ле-возакрученную спиральную конформацию.Спираль пептидной цепи коллагена стабилизирована не за счёт водородных связей (так как пролин их не образует), а силами стерического отталкивания пирролидиновых колец в остатках пролина. В результате расстояние между аминокислотными остатками по оси спирали увеличивается, и она оказывается более развёрнутой по сравнению с туго закрученной а-спиралью глобулярных белков.

Спирализованные полипептидные цепи, перевиваясь друг около друга, образуют трёхце-почечную правозакрученную суперспиральную молекулу, часто называемую тропоколлагено. Цепи удерживаются друг около дуга за счёт водородных связей, возникающих между амино- и карбоксильными группами пептидного остова разных полипептидных цепей, входящих в состав трёхспиральной молекулы. «Жёсткие» аминокислоты - пролин и гидроксипролин - ограничивают вращение полипептидного стержня и увеличивают тем самым стабильность тройной спирали.

Глицин, имеющий вместо радикала атом водорода, всегда находится в месте пересечения цепей-отсутствие радикала позволяет цепям плотно прилегать друг к другу.

В результате такого скручивания пептидных остовов полипептидных цепей и наличия удлинённой структуры два других радикала из триады аминокислот Гли-X-Y оказываются на наружной поверхности молекулы тропоколлагена. Некоторые комплементарные участки молекул тропоколлагена могут объединяться друг с другом, формируя коллагеновые фибриллы, причём эти участки расположены таким образом, что одна нить тропоколлагена сдвинута по отношению к другой примерно на 1/4 (рис. 1-42). Между радикалами аминокислот возникают ионные, водородные и гидрофобные связи. Важную роль в формировании коллагеновых фибрилл играют модифицированные аминокислоты:

гидроксипролин и гидроксилизин. Гидроксильные группы гидроксипролина соседних цепей тропоколлагена образуют водородные связи, укрепляющие структуру коллагеновых фибрилл. Радикалы лизина и гидроксилизина необходимы для образования прочных поперечных сшивок между молекулами тропоколлагена, ещё сильнее укрепляющие структуру коллагеновых фибрилл. Кроме того, к гидроксильной группе гидроксилизина могут присоединяться углеводные остатки (гликозилирование коллагена), функция которых пока неясна.

Таким образом, аминокислотная последовательность полипептидных цепей коллагена позволяет сформировать уникальную по своим механическим свойствам структуру, обладающую огромной прочностью. Изменение в первичной структуре коллагена может приводить к развитию наследственных болезней.

2. Строение и функция эластина

В отличие от коллагена, образующего прочные фибриллы, способные выдержать большие нагрузки, эластин (также белок межклеточного матрикса) обладает резиноподобными свойствами. Нити эластина, содержащиеся в тканях лёгких, в стенках сосудов, в эластичных связках, могут быть растянуты в несколько раз по сравнению с их обычной длиной, но после снятия нагрузки они возвращаются к свёрнутой конформации.

2. Строение и функция эластина

В отличие от коллагена, образующего прочные фибриллы, способные выдержать большие нагрузки, эластин (также белок межклеточного матрикса) обладает резиноподобными свойствами. Нити эластина, содержащиеся в тканях лёгких, в стенках сосудов, в эластичных связках, могут быть растянуты в несколько раз по сравнению с их обычной длиной, но после снятия нагрузки они возвращаются к свёрнутой кон-формапии.

Эластин содержит в составе около 800 аминокислотных остатков, среди которых преобладают аминокислоты cнеполярными радикалами, такие как глицин, ватин, аланин. Эластин содержит довольно много пролина и лизина, но лишь немного гидроксипролина; полностью от-сутствует гидроксилизин.

Наличие большого количества гидрофобных радикалов препятствует созданию стабильной глобулы, в результате полипептидные цепи эластина не формируют регулярные вторичную и третичную структуры, а принимают в межклеточном матриксе разные конформации с примерно равной свободной энергией (рис. 1-43). Это как раз тот случай строения первичной структуры, когда отсутствие одной стабильной упорядоченной конформации приводит к возникновению необходимых белку свойств.

Более подробно особенности строения и функционирования эластина рассмотрены в разделе 15.

2. Третичная и четвертичная структура белка, химические связи их стабилизирующие. Субъединицы и домены. Кооперативное взаимодействие субъединиц, значение для функционирования белков.

ТРЕТИЧНАЯ СТРУКТУРА

Это трехмерная архитектура полипептидной цепи – особое взаимное расположение в пространстве спиралеобразных, складчатых и нерегулярных участков полипептидной цепи. У разных белков третичной структуры различна. В формировании третичной структуры участвуют дисульфидные связи и все слабые типы связей.

Выделяют два общих типа третичной структуры:

1) В фибриллярных белках (например, коллаген , эластин) молекулы которых имеют вытянутую форму и обычно формируют волокнистые структуры тканей, третичная структура представлена либо тройной альфа-спиралью (например, в коллагене), либо бета-складчатыми структурами.

2) В глобулярных белках, молекулы которых имеют форму шара или эллипса (латинское название: GLOBULA - шар), встречается сочетание всех трех типов структур: всегда есть нерегулярные участки, есть бета-складчатые структуры и альфа-спирали.

Обычно в глобулярных белках гидрофобные участки молекулы находятся в глубине молекулы. Соединяясь между собой, гидрофобные радикалы образуют гидрофобные кластеры (центры). Формирование гидрофобного кластера вынуждает молекулу соответствующим образом изгибаться в пространстве. Обычно в молекуле глобулярного белка бывает несколько гидрофобных кластеров в глубине молекулы. Это является проявлением двойственности свойств белковой молекулы: на поверхности молекулы - гидрофильные группировки, поэтому молекула в целом - гидрофильная, а в глубине молекулы - спрятаны гидрофобные радикалы.

ЧЕТВЕРТИЧНАЯ СТРУКТУРА

Встречается не у всех белков, а только у тех, которые состоят из двух или более полипептидных цепей. Каждая такая цепь называется СУБЪЕДИНИЦЕЙ данной молекулы (или ПРОТОМЕРОМ). Поэтому белки, обладающие четвертичной структурой, называют ОЛИГОМЕРНЫМИ белками. В состав белковой молекулы могут входить одинаковые или разные субъединицы. Например, молекула гемоглобина «А» состоит из двух субъединиц одного типа и двух субъединиц другого типа, то есть является тетрамером. Фиксируются четвертичные структуры белков всеми типами слабых связей, а иногда еще и дисульфидными связями.

Четвертичная структура встречается не у всех белков. Каждая полипептидная цепь называется СУБЪЕДИНИЦЕЙ данной молекулы (или ПРОТОМЕРОМ).

Поэтому белки, обладающие четвертичной структурой, называют ОЛИГОМЕРНЫМИ белками.

В состав белковой молекулы могут входить одинаковые или разные субъединицы

Кооперативное взаимодействие

При связывание лиганда со специфическим участком белка, происходит изменение в структуре белковой молекуле, которое в свою очередь влияет на активность другого, пространственно удаленного участка (субъединицы, домена).

Кооперативные изменения

конформации олигомерных белков составляют основу механизма регуляции функциональной активности не только гемоглобина, но и многих других белков.

Белок может изменять свою конформацию не только при взаимодействии с лигандом, но и в результате любого химического взаимодействия. Примером такого взаимодействия может служить присоединение остатка фосфорной кислоты (фосфорилирование).

3. Нативная конформация белков : функциональное значение, механизм формирования. Денатурация белка. Фолдинг. Шапероны их роль в фолдинге и ренатурации. Заболевания, связанные с нарушением фолдинга.

НАТИВНОСТЬ (Natura (лат.) – природа) - это уникальный комплекс физических, физико-химических, химических и биологических свойств белковой молекулы, который принадлежит ей, когда молекула белка находится в естественном, природном (нативном) состоянии.

Для обозначения процесса, при котором нативные свойства белка теряются, используют термин ДЕНАТУРАЦИЯ

ДЕНАТУРАЦИЯ - это лишение белка его природных, нативных свойств, сопровождающееся разрушением четвертичной (если она была), третичной, а иногда и вторичной структуры белковой молекулы, которое возникает при разрушении дисульфидных и слабых типов связей, участвующих в образовании этих структур.

Первичная структура при этом сохраняется, потому что она сформирована прочными ковалентными связями.

Разрушение первичной структуры может произойти только в результате гидролиза белковой молекулы длительным кипячением в растворе кислоты или щелочи.

ФАКТОРЫ, ВЫЗЫВАЮЩИЕ ДЕНАТУРАЦИЮ БЕЛКОВ

можно разделить на физические и химические .

Физические факторы

Высокие температуры

Ультрафиолетовое облучение

Рентгеновское и радиоактивное облучение

Ультразвук

Механическое воздействие (например, вибрация).

Химические факторы

Концентрированные кислоты и щелочи. Например, трихлоруксусная кислота (органическая), азотная кислота (неорганическая).

Соли тяжелых металлов

Органические растворители (этиловый спирт, ацетон)

Растительные алкалоиды

Другие вещества, способные нарушать слабые типы связей в молекулах белков.

Воздействие факторами денатурации применяют для стерилизации оборудования и инструментов, а также как антисептики.

Обратимость денатурации

in vitro чаще всего денатурация необратима

In vivo, в организме, возможна быстрая ренатурация. Это связано с выработкой в живом организме специфических белков, которые «узнают» структуру денатурированного белка, присоединяются к нему с помощью слабых типов связи и создают оптимальные условия для ренатурации.

Такие специфические белки известны как «белки теплового шока», «белки стресса» или шапероны.

При различных видах стресса происходит индукция синтеза таких белков:

при перегреве организма (40-440С),

при вирусных заболеваниях,

при отравлениях солями тяжелых металлов, этанолом и др. Обратимость денатурации

В пробирке (in vitro) чаще всего это – необратимый процесс. Если же денатурированный белок поместить в условия, близкие к нативным, то он может ренатурировать, но очень медленно, и такое явление характерно не для всех белков.

In vivo, в организме, возможна быстрая ренатурация. Это связано с выработкой в живом организме специфических белков, которые «узнают» структуру денатурированного белка, присоединяются к нему с помощью слабых типов связи и создают оптимальные условия для ренатурации. Такие специфические белки известны как «белки теплового шока» или «белки стресса».

Белки стресса

Существует несколько семейств этих белков, они отличаются по молекулярной массе.

Например, известен белок hsp 70 – heatshock protein массой 70 kDa.

Такие белки есть во всех клетках организма. Они выполняют также функцию траспорта полипептидных цепей через биологические мембраны и участвуют в формировании третичной и четвертичной структур белковых молекул. Перечисленные функции белков стресса называются шаперонными. При различных видах стресса происходит индукция синтеза таких белков: при перегреве организма (40-44 0 С), при вирусных заболеваниях, отравлениях солями тяжелых металлов, этанолом и др.

В организме южных народов установлено повышенное содержание белков стресса, по сравнению с северной расой.

Молекула белка теплового шока состоит из двух компактных глобул, соединенных свободной цепью:

Разные белки теплового шока имеют общий план построения. Все они содержат контактные домены.

Разные белки с различными функциями могут содержать одинаковые домены. Например, различные кальций-связывающие белки имеют одинаковый для всех них домен, отвечающий за связывание Ca +2 .

Роль доменной структуры заключается в том, что она предоставляет белку большие возможности для выполнения своей функции благодаря перемещениям одного домена по отношению к другому. Участки соединения двух доменов – самое слабое в структурном отношении место в молекуле таких белков. Именно здесь чаще всего происходит гидролиз связей, и белок разрушается.

Молекула белка теплового шока состоит из двух компактных глобул, соединенных свободной цепью.

Также при участии шаперонов происходит фолдинг белков при их синтезе, обеспечивая возможность принять белку нативную структуру.

Болезни, связанные с нарушение фолдинга белков.

Амилоидозы - отложение амилоида в тканях.

Амилоид – фибрилярные отложения плохорастворимых в воде белков (нарушение конформации).

Понятие о прионах

Белки, обладающие инфекционными свойствами (либо попадают в организм, либо образуются спонтанно)

В организме человека существует нормальный аналог этого белка (первичная структура идентична)

Происходит нарушение вторичной структуры

Прионы устойчивы к действию протеаз

Прионы образуют агрегаты, к которым присоединяются нормальные белки, в последствии у которых меняется вторичная структура

Предположительно таким образом развиваются такие заболевания, как куру и коровье бешенство

4. Физико-химические свойства белков. Белки как гидрофильные соединения. Причины гидрофильности белковых молекул. Факторы, влияющие на заряд и гидратную оболочку белков (значение рН, присутствие электролитов в растворе).

ФИЗИКО-ХИМИЧЕСКИЕ СВОЙСТВА БЕЛКОВ. РАСТВОРИМОСТЬ БЕЛКОВ В ВОДЕ.

Большинство белков гидрофильны. Однако белковые молекулы имеют очень большие размеры, поэтому белки не могут образовывать истинных растворов, а только коллоидные. Внешнее проявление этого - это эффект Тиндаля (или конус Тиндаля). Эффект Тиндаля вызывается рассеянием тонкого пучка света при прохождении через белковый раствор. Несмотря на большую величину, многие белковые молекулы не осаждаются в водных растворах. Осаждению белковых молекул препятствуют факторы стабилизации белкового раствора.

ФАКТОРЫ СТАБИЛИЗАЦИИ БЕЛКА В РАСТВОРЕ.

ГИДРАТНАЯ ОБОЛОЧКА - это слой молекул воды, определенным образом ориентированных на поверхности белковой молекулы. Поверхность большинства белковых молекул заряжена отрицательно, и диполи молекул воды притягиваются к ней своими положительно заряженными полюсами (смотрите рисунок).

Чем больше гидрофильных свойств у белковой молекулы, чем больше в ее составе и на ее поверхности аминокислот с полярными (гидрофильными) радикалами, тем сильнее выражена и прочнее удерживается гидратная оболочка и тем больше в ней слоев. Вода гидратной оболочки обладает особыми свойствами: она не является свободной, а связана с белковой молекулой. Это - “связанная” вода. Она принадлежит белку, и поэтому имеет особые свойства.

Свойства воды гидратной оболочки

а) Температура кипения выше 100 0 С.

б) Температура замерзания ниже 0 О С.

в) В воде гидратной оболочки не растворяются различные соли и другие гидрофильные вещества.

г) Окружая каждую молекулу белка, гидратная оболочка не дает этим белковым молекулам сблизиться, соединиться и выпасть в осадок.

2) ЗАРЯД БЕЛКОВОЙ МОЛЕКУЛЫ. Поверхность большинства белковых молекул заряжена потому, что в каждой молекуле белка есть свободные заряженные СОО - и NH 3 + группы. Изоэлектрическая точка (ИЭТ) большинства белков организма находится в слабокислой среде. Это означает, что у таких белков количество кислотных (СООН) групп больше количества основных групп (NH 3). рН плазмы крови около 7,36 - это выше ИЭТ большинства белков, поэтому в плазме крови белки имеют отрицательный заряд.

молекулы, соотношению полярных и неполярных групп на поверхности нативной молекулы белка, растворимости белков, а также степени устойчивости к воздействию денатурирующих агентов.

/. Различия белков по форме молекул

Как уже говорилось выше, по форме молекул белки делят на глобулярные и фибриллярные. Глобулярные белки имеют более компактную структуру, их гидрофобные радикалы в большинстве своём спрятаны в гидрофобное ядро, и они значительно лучше растворимы в жидкостях организма, чем фибриллярные белки (исключение составляют мембранные белки).

2. Различия белков по молекулярной массе

Белки - высокомолекулярные соединения, но могут сильно отличаться по молекулярной массе, которая колеблется от 6000 до 1 000 000 Д и выше. Молекулярная масса белка зависит от количества аминокислотных остатков в полипептидной цепи, а для олигомерных белков - и от количества входящих в него протомеров (или субъединиц).

3. Суммарный заряд белков

Белки имеют в своём составе радикалы лизина, аргинина, гистидина, глутаминовой и аспа-рагиновой кислот, содержащие функциональные группы, способные к ионизации (ионогенные группы). Кроме того, на N- и С-концах полипептидных цепей имеются ос-амино- и а-карбок-сильная группы, также способные к ионизации. Суммарный заряд белковой молекулы зависит от соотношения ионизированных анионных радикалов Глу и Асп и катионных радикалов Лиз, Apr и Гис.

Степень ионизации функциональных групп этих радикалов зависит от рН среды. При рН раствора около 7 все ионогенные группы белка находятся в ионизированном состоянии. В кислой среде увеличение концентрации протонов (Н*) приводит к подавлению диссоциации карбоксильных групп и уменьшению отрицательного заряда белков: -СОО- + Н* -> -СООН. В щелочной среде связывание избытка ОН" с протонами, образующимися при диссоциации NH 3 * с образованием вод ы, приводит к уменьшению положительного заряда белков: -NH/+OH-->-NH 2 + Н 2 0.

Значение рН, при котором белок приобре тает суммарный нулевой заряд, называют "изо электрическая точка» и обозначают как pН изоэлектрической точке количество положи тельно и отрицательно заряженных групп белка ка одинаково, т.е. белок находится в изоэло! рическом состоянии.

Так как большинство белков в клетке и« ет в своем составе больше анионогенных гр« (-СОО~), то изоэлектрическая точка этих ба ков лежит в слабокислой среде. Изоэлектри ческая точка белков, в составе которых пш обладают катионогенные группы, находит! в щелочной среде. Наиболее яркий пример в ких внутриклеточных белков, содержашЛ мною аргинина и лизина. - гистоны, вход» шие в состав хроматина.

Белки, имеющие суммарный положится ный или отрицательный заряд, лучше растви римы, чем белки, находящиеся в изоэлектри ческой точке. Суммарный заряд увеличивая количество диполей воды, способных связи ваться с белковой молекулой, и препятств>в контакту одноимённо заряженных молекул. I результате растворимость белков увеличив» ется. Заряженные белки могут двигаться ■ электрическом поле: анионные белки, имею! щие отрицательный заряд, будут двигаться ■ положительно заряженному аноду (+), а ка-тионные белки - к отрицательно заряженному катоду (-). Белки, находящиеся в изоэлек-трическом состоянии, не перемещаются I электрическом поле.

4. Соотношение полярных и неполярных групп на поверхности нашивных молекул белков

На поверхности большинства внутриклеточных белков преобладают полярные радикалы.) однако соотношение полярных и неполярных групп отлично для разных индивидуальных белков. Так, протомеры олигомерных белков в области контактов друг с другом часто содержат гидрофобные радикалы. Поверхности белков, функционирующих в составе мембран или прикрепляющиеся к ним в процессе функционирования, также обогащены гидрофобными радикалами. Такие белки лучше растворимы в липидах, чем в воде.

Вопрос 5.Методы разделения и очистки белков. Высаливание, диализ, электрофорез, хроматография. Основные методы количественного определения белка в растворах (фотометрия, иммунохимия).

Методы выделения и очистки белков

Получение индивидуальных белков из биосинческого материала (тканей, органов, кле-точных культур) требует проведения последовательных операций, включающих:

Дробление биологического материала и разрушение клеточных мембран;

Фракционирование органелл, содержащих те или иные белки;

(■ экстракцию белков (перевод их в растворённое состояние);

Разделение смеси белков на индивидуальные белки.

Методы разрушения тканей ж экстракции белков

Для разрушения биологического материала используют методы: гомогенизации ткани, ме-год попеременного замораживания и оттаивания, а также обработку клеток ультразвуком.

Гомогенизация биологического материала

Ткань, находящуюся в буферном растворе с определённым значением рН и концентрацией солей, помещают в стеклянный сосуд (гомогенизатор) с пестиком. Вращающийся пестик измельчает я растирает ткань о притёртые стенки сосуда.

Метод замораживания и оттаивания ткани

В результате попеременного замораживания и оттаивания образующиеся кристаллы льда разрушают оболочки клеток.

После разрушения ткани нерастворимые части осаждают центрифугированием. Последующее центрифугирование гомогената с разной скоростью позволяет получить отдельные фракции, содержащие клеточные ядра, митохондрии и другие органеллы, а также надосадочную жидкость, в которой находятся растворимые белки цитозоля клетки. Искомый белок будет содержаться в одной из этих фракций.

Экстракция белков, связанных с мембранами, и разрушение олигомерных белков на прото-меры

Если искомый белок прочно связан с какими-либо структурами клетки, его необходимо перевести в раствор. Так, для разрушения гидрофобных взаимодействий между белками и липидами мембран в раствор добавляют детергенты; чаще всего используют тритон Х-100 или додецилсульфат натрия.

Механизм действия детергентов описан в разделе «Денатурация белков» (см. рис. 1-15). При действии детергентов обычно разрушаются и гидрофобные взаимодействия между протоме-рами в олигомерных белках.

Удаление из раствора небелковых веществ

Нуклеиновые кислоты, липиды и другие небелковые вещества можно удалить из раствора, используя их особенные физико-химические свойства. Так, липиды легко удаляются из раствора добавлением органических растворителей, например ацетона. Однако воздействие должно быть кратковременным, так как ацетон вызывает денатурацию некоторых белков. Нуклеиновые кислоты осаждают добавлением в раствор стрептомицина.

2. Методы очистки белков

Наиболее трудоёмкий этап получения индивидуальных белков - их очистка от других белков, находящихся в растворе, полученном из данной ткани. Часто изучаемый белок присутствует в небольших количествах, составляющих доли процента от всех белков раствора.

Так как белки обладают конформационной лабильностью, при работе с белками следует избегать денатурирующих воздействий, поэтому выделение и очистка белков происходят при низких температурах. На первых стадиях очистки белков целесообразно использовать методы, учитывающие какую-либо характерную особенность данного белка, например термостабильность или устойчивость в кислых растворах. Первыми методами очистки необходимо удалить из раствора основную массу балластных белков, которые значительно отличаются от выделяемого белка физико-химическими свойствами. Впоследствии применяют всё более тонкие методы очистки белка.

Очистка белков избирательной денатурацией

Большинство белков денатурирует и выпадает в осадок уже при кратковременном нагревании раствора до 50-70 "С или подкисле-нии раствора до рН 5. Если выделяемый белок выдерживает эти условия, то с помощью избирательной денатурации можно удалить большую часть посторонних белков, отфильтровав выпавшие в осадок белки, или осадить их центрифугированием.

" " Высаливание

Метод очистки белков, основанный на различиях в их растворимости при разной концентрации соли в растворе. Соли щелочных и щё-лочно-земельных металлов вызывают обратимое осаждение белков, т.е. после их удаления белки вновь приобретают способность растворяться, сохраняя при этом свои нативные свойства.

Чаще всего для разделения белков методом высаливания используют разные концентрации солей сульфата аммония - (NH 4) 2 S0 4 . Чем выше растворимость белка, тем большая концентрация соли необходима для его высаливания.

Гель-фильтрация, или метод молекулярных сит

Для разделения белков часто используют хро-матографические методы, основанные на распределении веществ между двумя фазами, одна из которых подвижная, а другая неподвижная. В основу хроматографических методов положены разные принципы: гель-фильтрации, ионного обмена, адсорбции, биологического сродства.

Метод разделения белков с помощью гель-фильтрационной хроматографии основан на том, что вещества, отличающиеся молекулярной массой, по-разному распределяются между неподвижной и подвижной фазами. Хром. колонка заполняется гранула пористого вещества.В стрктуре полисахарида образуются полур. связи и формируются гранулы через которые легко проходят вода и низкомолекулярные вещества. В зависимости от условий можно формировать гранулы с разной величиной «пор».Неподвижная фаза - жидкость внутри гранул, в которую способны проникать низкомолекулярные вещества и белки с небольшой молекулярной массой. Смесь белков, нанесения А на хроматографическую колонку, вымывая (элюируют), пропуская через колонку растворитель. Вместе с фронтом растворителя движутся и самые крупные молекулы.

Более мелкие молекулы диффундируют внутри гранул и на некоторое время попадают в неподвижную фазу, в результате чего движение задерживается. Величина пор опрелЯ ляет размер молекул, способных проникали внутрь гранул

Так как гелевая структура сефадекса легко лея формируется под давлением, гели стали заменять более жёсткими матрицами (сефактил, той-1 оперл), представляющими сферические грануян с разными размерами пор. Выбор размеров пор! в гранулах зависит от целей хроматографии (о других хроматографических методах будет сказано ниже).

Ультрацентрифугирование

Метод разделения также основан на различии в молекулярных массах белков. Скорость седиментации веществ в процессе вращения в ультрацентрифуге, где центробежное ускорение достигает 100 000-500 000 g, пропорционально их молекулярной массе. На поверхность буферного раствора, помещённого в кювету, наносят тонкий слой смеси белков. Кювету помешают в ротор ультрацентрифуги. При вращении ротора в течение 10-12 ч более крупные молекулы (с большей молекулярной массой) оседают в буферном растворе с большей скоростью. В результате в кювете происходит расслоение смеси белков на отдельные фракции с разной молекулярной массой (рис. 1-56). После расслоения белковых фракций дно кюветы прокалывают I иглой и по каплям собирают содержимое не- " большими порциями в пробирки. "Электрофорез белков

Метод основан на том, что при определениями -значении рН и ионной силы раствора бел-

ки двигаются в электрическом поле со скоростью, пропорциональной их суммарному заряду. Белки, имеющие суммарный отрицательный заряд, двигаются к аноду (+), а положительно заряженные белки - к катоду (-).

Электрофорез проводят на различных носителях: бумаге, крахмальном геле, полиакрила-мидном геле и др. В отличие от электрофореза на бумаге, где скорость движения белков пропорциональна только их суммарному заряду, в полиакриламидном геле скорость движения белков пропорциональна их молекулярным массам.

Разрешающая способность электрофореза в полиакриламидном геле выше, чем на бумаге. Так, при электрофорезе белков сыворотки крови человека на бумаге обнаруживают только 5 главных фракций: альбумины, а,-глобулины, с^-глобули-ны, Р-глобулины и у-глобулины.Электрофорез тех же белков в полиакриламидном геле позволяет получить до 18 различных фракций. Для обнаружения белковых фракций полоски бумаги или столбики геля обрабатывают красителем (чаще всего бромфеноловым синим или амидовым чёрным). Окрашенный комплекс белков с красителем выявляет расположение различных фракций на носителе.

Ионообменная хроматография

Так же как и электрофорез, метод основан на разделении белков, различающихся суммарным зарядом при определённых значениях рН и ионной силы раствора. При пропускании раствора белков через хроматографическую колонку, заполненную твёрдым пористым заряженным материалом, часть белков задерживается на нём в результате электростатических взаимодействий.

В качестве неподвижной фазы используют ионообменники - полимерные органические вещества, содержащие заряженные функциональные группы.

Различают положительно заряженные анио-нообменники, среди которых наиболее часто используют диэтиламиноэтилцеллюлозу (ДЭАЭ-целлюлозу), содержащую катионные группы, и отрицательно заряженные катионообменники, например карбоксиметилцеллюлозу (КМ-цел-люлозу), содержащую анионные группы.

Сн 2 -сн 3

0-CH 2 -CH 2 -N 4 "0-СН 2 -СОО"

Н СН 2 -СН 3

Диэтиламинэтилцеллюлоза Карбоксиметилцеллюлоза

Выбор ионообменника опреДСЛЯОТОЯ шридом выделяемого белка. Так, дли выделения ОТрИШ

тельно заряженного белка используют анионооб-менник. При пропускании раствора белка через колонку прочность связывания белка с анионо-обменником зависит от количества отрицательно заряженных карбоксильных групп в молекуле. Белки, адсорбированные на анионообменнике. можно смыть (элюировать) буферными растворами с различной концентрацией соли, чаще всего NaCI, и разными значениями рН. Ионы хлора связываются с положительно заряженными функциональными группами анионообменника и I вытесняют карбоксильные группы белков. При низких концентрациях соли элюируются белки, слабо связанные с анионообменником. Постелен- I ное увеличение концентрации соли или изменение рН, что меняет заряд белковой молекулы, при водит к выделению белковых фракций, в одной из которых находится искомый белок. \/ Аффинная хроматография, или хроматография по сродству

Это наиболее специфичный метод выделения индивидуальных белков, основанный на избирательном взаимодействии белков с лигандами, прикреплёнными (иммобилизированными) к твёрдому носителю. В качестве лиганда может быть использован субстрат или кофермент, если выделяют какой-либо фермент, антигены для выделения антител и т.д. Через колонку, заполненную иммобилизованным лигандом, пропускают раствор, содержащий смесь белков. К ли-ганду присоединяется только белок, специфично взаимодействующий с ним; все остальные белки выходят с элюатом (рис. 1-58). Белок, адсорбированный на колонке, можно снять, промыв её раствором с изменённым значением рН или изменённой ионной силой. В некоторых случаях используют раствор детергента, разрывающий гидрофобные связи между белком и лигандом.

Аффинная хроматография отличается высокой избирательностью и помогает очистить выделяемый белок в тысячи раз.

Избирательная тепловая денатурация - кратко­временное нагревание раствора белков, при котором можно удалить часть денатурированных белковых примесей

. Высаливание. Различные белки выпадают в осадок при разной концентрации соли в раство­ре. Постепенно повышая ее концентрацию, мож­но получить ряд отдельных фракций с преимуще­ственным содержанием выделяемого белка в одной из них. Наиболее часто для фракционирования белков используют сульфат аммония. Бел­ки с наименьшей растворимостью выпадают в осадок при небольшой концентрации солей.

5 Гель-фильтрация - метод молекулярного про­сеивания молекул через набухшие гранулы сефа-декса (трехмерные полисахаридные цепи декстра-на, имеющие поры). Скорость прохождения белков через колонку, заполненную сефадексом, будет за­висеть от их молекулярной массы: чем меньше масса молекул, тем легче они проникают внутрь гранул и дольше там задерживаются, чем больше масса, тем быстрее они элюируются с колонки.

Ультрацентрифугирование - метод, заключаю­щийся в том, что белки в центрифужной пробирке помещают в ротор ультрацентрифуги. При враще­нии ротора скорость оседания белков пропорцио­нальна их молекулярной массе: более тяжелые бел­ки образуют фракции, расположенные ближе ко дну кюветы, более легкие - к поверхности.

Ионообменная хроматография - метод фрак­ционирования, основанный на связывании ио­низированных групп белков с противоположно заряженными группами ионообменных нерас­творимых полимеров. Прочность связывания белка со смолой пропорциональна заряду белка. Белки, адсорбированные на ионообменном по­лимере, можно смыть возрастающими концент­рациями NaCl; чем меньше заряд белка, тем меньшая концентрация NaCl потребуется, чтобы смыть белок, прикрепленный к ионогенным группам смолы. Аффинная хроматография - наиболее специфи­ческий метод выделения индивидуальных белков. К инертному полимеру ковалентно присоединяется лиганд какого-либо белка. При пропускании рас­твора белков через колонку с полимером за счет комплементарного связывания белка с лигандом на колонке адсорбируется только специфичный для данного лиганда белок.

Электрофорез белков

Метод основан на том, что при определён­ном значении рН и ионной силы раствора бел-

ки двигаются в электрическом поле со скоростью, пропорциональной их суммарному заряду. Белки, имеющие суммарный отрицательный заряд, двигаются к аноду (+), а положительно заряженные белки - к катоду (-).

Электрофорез проводят на различных носи­телях: бумаге, крахмальном геле, полиакрила-мидном геле и др. В отличие от электрофореза на бумаге, где скорость движения белков пропорциональна только их суммарному заряду,в полиакриламидном геле скорость движения белков пропорциональна их молекулярным массам.

Разрешающая способность электрофореза в по­лиакриламидном геле выше, чем на бумаге. Так, при электрофорезе белков сыворотки крови че­ловека на бумаге обнаруживают только 5 главных фракций: альбумины, а,-глобулины, а2-глобули­ны, в-глобулины и у-глобулины Элек­трофорез тех же белков в полиакриламидном геле позволяет получить до 18 различных фракций. Для обнаружения белковых фракций полоски бумаги или столбики геля обрабатывают красителем (чаще всего бромфеноловым синим или амидовым чёр­ным). Окрашенный комплекс белков с красите­лем выявляет расположение различных фракций на носителе.

3) Хроматография. Принцип основан на способности веществ специфически адсорбироваться на адсорбенте, заключенном в колонке.

Ионообменная хроматография

метод основан на разделении белков, различающихся суммар­ным зарядом при определённых значениях рН и ионной силы раствора. При пропускании ра­створа белков через хроматографическую колон­ку, заполненную твёрдым пористым заряжен­ным материалом, часть белков задерживается на нём в результате электростатических взаи­модействий.

В качестве неподвижной фазы используют ионообменники - полимерные органические вещества, содержащие заряженные функцио­нальные группы.

Различают положительно заряженные анио-нообменники, среди которых наиболее часто используют диэтиламиноэтилцеллюлозу, и отрицательно заряженные катионообменники, например карбоксиметилцеллюлозу содержащую анионные группы.

Выбор ионообменника определяется зарядом выделяемого белка. Так, для выделения отрицательно заряженного белка используют анионооб-менник. При пропускании раствора белка через колонку прочность связывания белка с анионо-обменником зависит от количества отрицательно заряженных карбоксильных групп в молекуле. Белки, адсорбированные на анионообменнике, можно смыть буферными раство­рами с различной концентрацией соли, и разными значениями рН. Ионы хлора связываются с положительно заряженными фун­кциональными группами анионообменника и вытесняют карбоксильные группы белков. При низких концентрациях соли -СМЫВАются белки, слабо связанные с анионообменником. Постепен­ное увеличение концентрации соли или измене­ние рН, что меняет заряд белковой молекулы, при­водит к выделению белковых фракций, в одной из которых находится искомый белок.

Классификация аминокислот

Строение пептида

Количество аминокислот в составе пептидов может сильно варьировать. Пептиды, содержащие до 10 аминокислот, называют олигопептиды. Час­то в названии таких молекул указывают количе­ство входящих в состав олигопептида аминокис­лот: трипептид, пентапептид, октапептид и т.д. Пептиды, содержащие более 10 аминокислот, называют «полипептиды», а полипептиды, состоя­щие из более чем 50 аминокислотных остатков, обычно называют белками..

Мономеры аминокислот, входящих в состав бел­ков, называют «аминокислотные остатки». Амино­кислотный остаток, имеющий свободную амино­группу, называется N-концевым и пишется слева, а имеющий свободную -карбоксильную груп­пу - С-концевым и пишется справа. Пептиды пи­шутся и читаются с N-конца. Цепь повторяющих­ся атомов в полипептидной цепи -NH-CH-CO-носит название «пептидный остов» (

Пептиды различаются по аминокислотному составу, количеству и порядку аминокислот.

2. Характеристика пептидной связи

Пептидная связь имеет характеристику час­тично двойной связи, поэтому она короче, чем остальные связи пептидного остова, и вслед­ствие этого мало подвижна. Электронное стро­ение пептидной связи определяет плоскую жё­сткую структуру пептидной группы. Плоскости пептидных групп расположены под углом друг к другу

Связь между углеродным атомом и аминогруппой или а-карбоксильной группой спо­собна к свободным вращениям (хотя ограниче­на размером и характером радикалов), что позволяет полипептидной цепи принимать раз­личные конфигурации.

Пептидные связи обычно расположены в транс-конфигурации, т.е. -углеродные атомы располагаются по разные стороны от пептид­ной связи. В результате боковые радикалы ами­нокислот находятся на наиболее удалённом рас­стоянии друг от друга в пространстве

Пептидные связи очень прочны и самопроиз­вольно не разрываются при нормальных услови­ях, В живых организмах пептидные связи в бел­ках разрываются с помощью специальных про-теолитических ферментов Для обнаружения в растворе белков и пепти­дов, а также для их количественного определе­ния используют биуретовую реакцию

7. Первичная структура белков, т.е. последовательность аминокислот в нем, программируется последовательностью нуклеотидов в ДНК. Выпадение, вставка, замена нуклеотида в ДНК приводит к изменению аминокислотного состава и, следовательно, структуры синтезируемого белка.

Методы изучения первичной структуры белка.

Кислотный гидролиз белка

Для определения аминокислотного состава необходимо провести разрушение всех пептидных связей в белке. Анализируемый белок гидролизуют в 6 мол/л НС1 при температуре около 110 °С в течение 24 ч. В результате разрушаются пептидные связи в белке, а в гидролизате присутствуют только свободные аминокислоты

Разделение аминокислот с помощью ионообменной хроматографии Смесь аминокислот, полученных кислотным гидролизом белков, разделяют в колонке с катионообменной смолой.

Количественный анализ полученных фракций. нагреваютотдельные фракции аминокислот с нингидрином, образующим соединение красно-фиолетового цвета. Интенсивность окраски в пробе пропорциональна количеству находящейся в ней аминокислоты.

2. Определение аминокислотной
последовательности в белке

Если связанные полипептидные цепи направлены противоположно, возникает антипараллельная?-структура, если же N- и С-концы полипептидных цепей совпадают, образуется структура параллельного?-складчатог

9. Третичная структура – это укладка полипептидной цепи в глобулу ("клубок"). Четкой границы между вторичной и третичной структурами провести нельзя, в основе третичной структуры лежат стерические взаимосвязи между аминокислотами, отстоящими далеко друг от друга в цепи. Благодаря третичной структуре происходит еще более компактное формирование цепи. В стабилизации третичной структуры белка принимают участие:

ковалентные связи (между двумя остатками цистеина - дисульфидные мостики);

ионные связи между противоположно заряженными боковыми группами аминокислотных остатков;

водородные связи;

гидрофильно-гидрофобные взаимодействия. При взаимодействии с окружающими молекулами воды белковая молекула «стремится» свернуться так, чтобы неполярные боковые группы аминокислот оказались изолированы от водного раствора; на поверхности молекулы оказываются полярные гидрофильные боковые группы.

Связь с первичной структурой. Третичная структура в значительной степени предопределена первичной структурой. Усилия по предсказанию третичной структуры белка основываясь на первичной структуре известна как задача предсказания структуры белка. Однако, окружающая среда, в которой белок сворачивается существенно определяет конечную форму, но обычно непосредственно не принимается во внимание текущими методами предсказания. Большинство таких методов полагаются на сравнения с уже известными структурами, и таким образом включают окружающую среду косвенно.Супервторичная структура белков. сравнение конформаций разных по структуре и функциям белков выявило наличие у них похожих сочетаний элементов вторичной структуры. Такой специфический порядок формирования вторичных структур называют супервторичной структурой белков.она формируется за счёт межрадикальных взаимодействий. Определённые характерные сочетания а-спиралей и б-структур часто обозначают как "структурные мотивы".

В данный структурный мотив входят две а-спирали. Более короткая а-спираль располагается поперёк бороздки, а более длинная а-спираль - в большой бороздке, образуя не-ковалентные специфические связи радикалов аминокислот с нуклеотидами ДНК

3. Супервторичная структурав виде "цинкового пальца"

Этот вид супервторичной структуры также часто отмечают в ДНК-связывающих белках. "Цинковый палец" - фрагмент белка, содержащий около 20 аминокислотных остатков, в котором атом цинка связан с радикалами четырёх аминокислот: обычно с двумя остатками цистеина и двумя - гистидина. В некоторых случаях вместо остатков гистидина также находятся остатки цистеина

4. Супервторичная структура
в виде "лейциновой застёжки-молнии"

Некоторые ДНК-связывающие белки олигомерны, т.е. содержат в своём составе несколько полипептидных цепей. Кроме того, существуют белки, которые функционируют в комплексе с другими белками. Объединение протомеров или отдельных белков в комплексы иногда осуществляется с помощью структурных мотивов, называемых "лейциновая застёжка-молния".

10. Четвертичная структура белка-это количество и взаиморасположение полипептидных цепей

Белки, состоящие из одной полипептидной цепи, имеют только третичную структуру (лизоцим, пепсин, миоглобин, трипсин).Их называют мономерами.Цепи белков соединенные ковалентными связями (например дисульфидными)поэтому инсулин мономерный белок.

Для белков, состоящих из нескольких полипептидных цепей, характерна четвертичная структура.

Под четвертичной структурой понимают объединение отдельных полипептидных цепей с третичной структурой в функционально активную молекулу белка. Каждая отдельная полипептидная цепь называется протомером и чаще не обладает биологической активностью.Олигомерные белки содержат от 2(гексокиназа)до 312(пируватдегидрогеназа)пртомеров.Специфичность связывания протомеров за счет зависит от совокупности радикалов третичной структуры и определяется комплементарностьюпротомеров.

Комплементарность-пространственное и химическое соответствие взаимодействующих поверхностей.

В молекуле белка может быть несколько протомеров, которые при объединении образуют олигомер или мультимер.

Для белков с четвертичной структурой характерно понятие субъединицы.

Субъединица – это функционально активная часть молекулы белка.

Примером белка с четвертичной структурой является гемоглобин, состоящий из 4 протомеров: 2 α и 2 β - цепей.

Взаимодействие полипептидных цепей при формировании олигомера происходит за счет полярных групп аминокислотных остатков. Между полярными группами образуется ионная, водородные связи, гидрофобные взаимодействия.

Активные центры возникают при образовании четвертичной структуры.

В молекуле белка имеются прочные (ковалентные) связи, а также слабые, что обеспечивает с одной стороны стабильность молекулы, а с другой лабильность.

Альфа спирали в протомере обозначают латинскими буквами от A до H,начиная с N конца

Кооперативные изменения конформациипротомеров.

Кислород связывается с протомерами гемоглобина чере железо(2),который соединен с 4 атомами азота пиррольных колец и атомом азота Гис F8 белковой части протомера.Связывание кислорода с оставшейся координационной связью железа происходит по другую сторону от плоскости гема.Гис Е7 обеспечивает оптимальные условия.Присоединение кислорода к атому железа одного протомера вызывает его перемещение в плоскостььгема,за ним перемещаются остаток Гис F8 и полипептидная цепь.Так как протомер связан с остальными протомерами,а белки обладают конформационной лабильностью,происходит изменение конформации всего белка.Конформационные изменения,произошедшие в других протомерах,облегчают присоединение следующей молекулы кислорода,что вызывает новые конформационные изменения в белке и ускорение связывания следующей молекулы кислорода.Четвертая молекула кислорода присоединяется к гемоглобину в 300 раз легче первой.

Изменение конформациивсехпротомеров олигомерного белка при присоединение лиганда только к одному из них носит название Кооперативные изменения конформациипротомеров.

Аналогичным образом в тканях диссоцифция каждой молекулы кислорода изменяет конфоормацию всех протомеров и облегчает отщепление последующих молекул кислорода.

Амфотерность

Так как белки содержат кислые и основные аминокислоты, то в их составе всегда имеются свободные кислые (СОО –) и основные (NH 3 +) группы.

Заряд белка зависит от соотношения количества кислых и основных аминокислот. Поэтому, аналогично аминокислотам, белки заряжаются положительно при уменьшении рН, и отрицательно при его увеличении. Если рН раствора соответствует изоэлектрической точке белка, то заряд белка равен 0.

Если в пептиде или белке преобладают кислые аминокислоты (глутамат и аспартат), то при нейтральных рН заряд белка отрицательный и изоэлектрическая точка находится в кислой среде. Для большинства природных белков изоэлектрическая точка находится в диапазоне рН 4,8-5,4, что свидетельствует о преобладании в их составе глутаминовой и аспарагиновой аминокислот.

Если в белке преобладают основные аминокислоты (лизин и аргинин) – при нейтральных рН заряд положительный и обусловлен этими, положительно заряженными, аминокислотами.

Амфотерность имеет значение для выполнения белками некоторых функций. Например, буферные свойства белков, т.е. способность поддерживать неизменным рН крови, основаны на способности присоединять ионы Н + при закислении среды или отдавать их при защелачивании.

С практической стороны наличие амфотерности позволяет разделять белки по заряду (электрофорез ) или использовать изменение величины рН раствора для осаждения какого-либо известного белка. Наличие как положительных, так и отрицательных зарядов в белке обуславливает их способность к высаливанию, что удобно для выделения белков в нативнойконформации.

Влияние рН на заряд белка

При смещении рН в растворе изменяется концентрация ионов Н + . При закислении среды (при снижении рН) ниже изоэлектрической точки ионы Н + присоединяются к отрицательно заряженным группам глутаминовой и аспарагиновой кислот и нейтрализуют их. Заряд белка при этом становится положительным.

При увеличении рН в растворе выше изоэлектрической точки концентрация ионов Н + снижается и положительно заряженные группы белка (NH 3 + -группы лизина и аргинина) теряют протоны, их заряд исчезает. Суммарный заряд белка становится отрицательным.

Растворимость . Так как большинство белков несет много заряженных групп, то в целом они водорастворимы . Растворимость объясняется:

  • наличием заряда и взаимоотталкиванием заряженных молекул белка,
  • наличием гидратной оболочки – чем больше полярных и/или заряженных аминокислот в белке, тем больше гидратная оболочка. Например, 100 г белка альбумина связывает 30-50 г воды

Пример денатурации - свертывание яичных белков при варке яиц. Денатурация бывает обратимой и необратимой.

Необратимая денатурация может быть вызвана образованием нерастворимых веществ при действии на белки солей тяжелых металлов - свинца или ртути.

РЕНАТУРА́ЦИЯ - процесс восстановления структурной организации биополимера (белковой молекулы или молекул нуклеиновых кислот). Ренатурация возможна только при обратимой денатурации. Ренатурация лежит в основе многих биологических механизмов.

Нужно отметить, что не все белки способны ренатурировать; у большинства белков денатурация необратима. Ренатурация возможна только если затронута третичная или вторичная структура. При этом восстанавливаются функции данного белка.

Внешние проявления денатурации сводятся к потере растворимости, особенно в изоэлектрической точке, повышению вязкости белковых растворов, увеличению количества свободных функциональных SH-групп и изменению характера рассеивания рентгеновских лучей. Наиболее характерным признаком денатурации является резкое снижение или полная потеря белком его биологической активности (каталитической, антигенной или гормональной). При денатурации белка, вызванной 8М мочевиной или другим агентом, разрушаются в основном нековалентные связи (в частности,гидрофобны взаимодействия и водородные связи). Дисульфидные связи в присутствии восстанавливающего агента меркаптоэтанола разрываются, в то время как пептидные связи самого остова полипептидной цепи не затрагиваются. В этих условиях развертываются глобулы нативных белковых молекул и образуются случайные и беспорядочные структуры.

Вызывать денатурацию белков могут разнообразные факторы , перечисленные ниже.

Нагревание или излучение белка , например инфракрасное или ультрафиолетовое. Кинетическая энергия, сообщаемая белку, вызывает вибрацию его атомов, вследствие чего слабые водородные и ионные связи разрываются,и белок свертывается (коагулирует).

Сильные кислоты, щелочи, соли денатурируют белок . Под действием этих реагентов ионные связи разрываются и белок коагулирует. Длительное воздействие реагента может вызвать разрыв и пептидных связей.

Тяжелые металлы денатурируют белок . Положительно заряженные ионы тяжелых металлов (катионы) образуют прочные связи с отрицательно заряженными карбоксил-анионами R-групп белка и часто вызывают разрывы ионных связей. Они также снижают электрическую поляризацию белка, уменьшая его растворимость. Вследствие этого находящийся в растворе белок выпадает в осадок.

Органические растворители и детергенты денатурируют белок . Эти реагенты нарушают гидрофобные взаимодействия и образуют связи с гидрофобными (неполярными) группами. В результате разрываются и внутримолекулярные водородные связи. Использование спирта в качестве дезинфицирующего средства основано именно на том, что он вызывает денатурацию белка любых присутствующих бактерий.

13.Свойства белковых растворов определяются большими размерами молекул, т.е. белки являются коллоидными частицами и образуют коллоидные растворы.

К свойствам белковых растворов относятся:

1. Рассеивание света вследствие дифракции на коллоидных частицах – опалесценция . Особенно это заметно при прохождении луча света через белковый раствор, когда виден светящийся конус (эффект Тиндаля).

2. Белковые растворы в отличие от истинных обладают малой скоростьюдиффузии .

3. Неспособность белковых частиц проникать через мембраны, поры которых меньше диаметра белков (полунепроницаемые мембраны). Это используется в диализе . Очистка белковых препаратов от посторонних примесей лежит в основе работы "искусственной почки " при лечении острой почечной недостаточности.

4. Создание онкотического давления, то есть перемещение воды в сторону более высокой концентрации белка, что проявляется, например, как формирование отеков при повышении проницаемости сосудистой стенки.

5. Высокая вязкость в результате сил сцепления между крупными молекулами, что проявляется, например, при образовании гелей и студней.

Главными факторами устойчивости белка в растворе служат заряд молекулы и гидратная оболочка.
Общий поверхностный заряд белковой молекулы при растворении в воде определяется суммой зарядов отдельных аминокислотных остатков, из которых построен белок. Если в составе протеина преобладают "щелочные" аминокислоты (аргинин, лизин), то молекула в целом заряжается по-ложительно; при преобладании дикарбоновых аминокислот - отрицательно. Одноименно заряженные белковые молекулы в растворе отталкиваются друг от друга, что препятствует их осаждению.
Важной особенностью белка является способность менять величину и даже знак заряда при изменении рН среды, что связано с обратимостью диссоциации ионогенных групп в аминокислотных остатках (см. выше). Так, при добавлении кислоты к раствору белка часть СОО^-групп, связывая избыток протонов, рекомбинирует до СООН-групп; при этом их отрицательные заряды исчезают, а все положительные заряды сохраняются. Это ведет к сдвигу общего заряда белка в положительную сторону.
Для каждого белка можно подобрать такое значение рН среды, при котором количество положительных зарядов в молекуле сравняется с количеством отрицательных, а их алгебраическая сумма будет равна нулю. Это значение рН (не обязательно нейтральное!) называется изоэлектриче-ской точкой белка (ИЭТ). При сдвиге рН в кислую или щелочную сторону


Рис. 2.4. Изменение заряда белковой молекулы при сдвигах рН среды
С локальными поверхностными зарядами белка связано наличие гидратной оболочки: молекулы-диполи воды "облепляют" белок в один или несколько слоев в зависимости от величины заряда. Одно из основных качеств гидратной оболочки - упругость; при столкновении гидратирован-ных молекул белка в растворе они не слипаются, а отскакивают друг от друга, что препятствует их выпадению в осадок. Для осаждения белков нужно нейтрализовать заряд молекулы, доведя рН среды до ИЭТ, и "снять" гидратную оболочку действием концентрированных растворов солей (высаливание) или спирта.

Реакции осаждения белков

Белки в растворе и соответственно в организме сохраняются в нативном состоянии за счет факторов устойчивости, к которым относятся заряд белковой молекулы и гидратная оболочка вокруг нее. Удаление этих факторов приводит к склеиванию молекул белков и выпадению их в осадок. Осаждение белков может быть обратимым и необратимым в зависимости от реактивов и условий реакции. В клинической лабораторной практике реакции осаждения используют для выделения альбуминовой и глобулиновой фракций белков плазмы крови, количественной характеристики их устойчивости в плазме, обнаружения белков в биологических жидкостях и освобождения от них с целью получения без белкового раствора.

Обратимое осаждение. Под действием факторов осаждения белки выпадают в осадок, но после прекращения действия (удаления) этих факторов белки вновь переходят в растворимое состояние и приобретают свои нативные свойства. Одним из видов обратимого осаждения белков является высаливание.

Высаливание . Насыщенным раствором сульфата аммония осаждается альбуминовая фракция белков, полунасыщенным раствором - глобулиновая фракция.
Сущность реакции заключается в дегидратации молекул белка.

Реактивы:

1) неразведенный яичный белок;

2) насыщенный раствор сульфата аммония;

3) NaOH, 10% раствор,

4) CuSO4, 1% раствор;

5) дистиллированная вода;

6) сульфат аммония в порошке.

Необратимое осаждение белков .

Необратимое осаждение белков связано с глубокими нарушениями структуры белков (вторичной и третичной) и потерей ими нативных свойств. Такие изменения белков можно вызвать кипячением, действием концентрированных растворов минеральных и органических кислот, солями тяжелых металлов.

Осаждение при кипячении.

Белки являются термолабильными соединениями и при нагревании свыше 50-60 градусов С денатурируются. Сущность тепловой денатурации заключается в разрушении гидратной оболочки, разрыве стабилизирующих белковую глобулу связей и развертывании белковой молекулы. Наиболее полное и быстрое осаждение происходит в изоэлектрической точке (когда заряд молекулы равен нулю), поскольку частицы белка при этом наименее устойчивы. Белки, обладающие кислыми свойствами, осаждаются в слабокислой среде, а белки с основными свойствами - в слабощелочной. В сильнокислых или сильнощелочных растворах денатурированный при нагревании белок в осадок не выпадает, т.к. его частицы перезаряжаются и несут в первом случае положительный, а во втором - отрицательный заряд, что повышает их устойчивость в растворе.

Реактивы:

1) яичный белок, 1% раствор;

2) уксусная кислота, 1% и 10% растворы;

3) NaOH, 10% раствор.

Каждый индивидуальный белок, имеющий уникальную первичную структуру и конформацию, обладает и уникальной функцией, отличающей его от bqcx остальных белков. Набор индивидуальных белков выполняет в клетке множество разнообразных и сложных функций.

Необходимое условие для функционирования белков - присоединение к нему другого вещества, которое называют "лиганд". Лигандами могут быть как низкомолекулярные вещества, так и макромолекулы. Взаимодействие белка с лигандомвысокоспецифично, что определяется строением участка белка, называемого центром связывания белка с лигандом или активным центром.

А. Активный центр белков и избирательность связывания его с лигандом

Активный центр белков - определённый участок белковой молекулы, как правило, находящийся в её углублении ("кармане"), сформированный радикалами аминокислот, собранных на определённом пространственном участке при формировании третичной структуры и способный комплементарно связываться с лигандом. В линейной последовательности полипептидной цепи радикалы, формирующие активный центр, могут находиться на значительном расстоянии друг от друга.

Высокая специфичность связывания белка с лигандом обеспечивается комплементарностью структуры активного центра белка структуре лиганда (рис. 1-25).

Под комплементарностью понимают пространственное и химическое соответствие взаимодействующих молекул. Лиганд должен обладать способностью входить и пространственно совпадать с конформацией активного центра. Это совпадение может быть неполным, но благодаря конформационной лабильности белка активный центр способен к небольшим изменениям и "подгоняется" под лиганд. Кроме того, между функциональными группами лиганда и радикалами аминокислот, образующих активный центр, должны возникать связи, удерживающие лиганд в активном центре. Связи между лигандом и активным центром белка могут быть как нековалентными (ионными, водородными, гидрофобными), так и ковалентными.

Рис. 1-25. Взаимодействие белка с лигандом. А и Б - некомплементарное взаимодействие и разрушение связей между белком и лигандом; В - комплементарное взаимодействие белка с лигандом.

1. Характеристика активного центра

Активный центр белка - относительно изолированный от окружающей белок среды участок, сформированный аминокислотными остатками. В этом участке каждый остаток благодаря своему индивидуальному размеру и функциональным группам формирует "рельеф" активного центра.

Объединение таких аминокислот в единый функциональный комплекс изменяет реакционную способность их радикалов, подобно тому, как меняется звучание музыкального инструмента в ансамбле. Поэтому аминокислотные остатки, входящие в состав активного центра, часто называют "ансамблем" аминокислот.

Уникальные свойства активного центра зависят не только от химических свойств формирующих его аминокислот, но и от их точной взаимной ориентации в пространстве. Поэтому даже незначительные нарушения общей конформации белка в результате точечных изменений его первичной структуры или условий окружающей среды могут привести к изменению химических и функциональных свойств радикалов, формирующих активный центр, нарушать связывание белка с лигандом и его функцию. При денатурации активный центр белков разрушается, и происходит утрата их биологической активности.

Часто активный центр формируется таким образом, что доступ воды к функциональным группам его радикалов ограничен, т.е. создаются условия для связывания лиганда с радикалами аминокислот.

В некоторых случаях лиганд присоединяется только к одному из атомов, обладающему определённой реакционной способностью, например присоединение О 2 к железу миоглобина или гемоглобина. Однако свойства данного атома избирательно взаимодействовать с О 2 определяются свойствами радикалов, окружающих атом железа в составе тема. Гем содержится и в других белках, таких как цитохромы. Однако функция атома железа в цитохромах иная, он служит посредником для передачи электронов от одного вещества другому, при этом железо становится то двух-, то трёхвалентным.

Центр связывания белка с лигандом часто располагается между доменами. Например, протеолитический фермент трипсин, участвующий в гидролизе пептидных связей пищевых белков в кишечнике, имеет 2 домена, разделённых бороздкой. Внутренняя поверхность бороздки формируется аминокислотными радикалами этих доменов, стоящими в полипептидной цепи далеко друг от друга (Сер 177 , Гис 40 , Асп 85).

Разные домены в белке могут перемещаться друг относительно друга при взаимодействии с лигандом, что облегчает дальнейшее функционирование белка. В качестве примера можно рассмотреть работу гексокиназы, фермента, катализирующего перенос фосфорного остатка с АТФ на молекулу глюкозы (при её фосфорилировании). Активный центр гексокиназы располагается в расщелине между двумя доменами (рис. 1-26) При связывании гексокиназы с глюкозой окружающие её домены сближаются, и субстрат оказывается в "ловушке", что облегчает его дальнейшее фосфорилирование.

Основное свойство белков, лежащее в основе их функций, - избирательность присоединения к определённым участкам белковой молекулы специфических лигандов.

2. Многообразие лигандов

  • Лигандами могут быть неорганические (часто ионы металлов) и органические вещества, низкомолекулярные и высокомолекулярные вещества;
  • существуют лиганды, которые изменяют свою химическую структуру при присоединении к активному центру белка (изменения субстрата в активном центре фермента);
  • существуют лиганды, присоединяющиеся к белку только в момент функционирования (например, О 2 , транспортируемый гемоглобином), и лиганды, постоянно связанные с белком, выполняющие вспомогательную роль при функционировании белков (например, железо, входящее в состав гемоглобина).

В тех случаях, когда аминокислотные остатки, формирующие активный центр, не могут обеспечить функционирование данного белка, к определённым участкам активного центра могут присоединяться небелковые молекулы. Так, в активном центре многих ферментов присутствует ион металла (кофактор) или органическая небелковая молекула (кофермент). Небелковую часть, прочно связанную с активным центром белка и необходимую для его функционирования, называют "простатическая группа". Миоглобин, гемоглобин и цитохромы имеют в активном центре простетическую группу - гем, содержащий железо (более подробно гемсодержащие белки описаны в разделе 4, а кофакторы и коферменты - в разделе 2).

Соединение протомеров в олигомерном белке - пример взаимодействия высокомолекулярныхлигандов. Каждый протомер, соединённый с другими протомерами, служит для них лигандом, так же как они для него.

Иногда присоединение какого-либо лиганда изменяет конформацию белка, в результате чего формируется центр связывания с другими лигандами. Например, белок кальмодулин после связывания с четырьмя ионами Са 2+ в специфических участках приобретает способность взаимодействовать с некоторыми ферментами, меняя их активность.

Рис. 1-26. Связывание гексокиназы с глюкозой.

3. Сродство активного центра лиганду

Скорость взаимодействия белка с лигандом определяется концентрациями белка и лиганда в растворе, а также степенью комплементарности белка и лиганда.

Константа диссоциации - характеристика сродства активного центра лиганду.

· Так как взаимодействие белка с лигандом - обратимый процесс, то его можно описать следующим уравнением.

Изучение физико-химических свойств, химического состава и структуры возможно только при исследовании очищенного белкового препарата. Для выделения и фракционирования индивидуальных белков используются: высаливание, осаждение органическими растворителями, гельфильтрация, электрофорез, ионообменная хроматография, аффинная хроматография.

Высаливание белков основано на зависимости растворимости белка от свойств среды. В дистиллированной воде протеины растворяются хуже, чем в слабых растворах солей, так как низкие концентрации ионов поддерживают их гидратные оболочки. Но при высоких концентрациях соли молекулы белка теряют гидратные оболочки, агрегируют и образуется осадок. После удаления соли белки вновь переходят в раствор, сохраняя нативные свойства и конформацию.

Изменение растворимости при различных концентрациях соли и рН среды используется для выделения индивидуальных белков. Чаще всего для высаливания белков используют растворы сульфата аммония разной концентрации.

Осаждение белков из раствора без их денатурации осуществляют с помощью дегидрирующих агентов - органических растворителей (этанол, ацетон).

Гель-фильтрация основана на разделении белков по величине и форме молекулы. Разделение проводят в хроматографических колонках, заполненных гранулами пористого геля (сефадекса, агарозы), в буферном растворе с определенным значением рН. Гранулы геля проницаемы для белков благодаря внутренним каналам (порам) с определенным средним диаметром, размер которого зависит от типа геля (сефадекс G-25, G-200 и т.д.). Смесь белков вносят в колонку и затем вымывают (элюируют) буферным раствором с определенным значением рН. Крупные молекулы белка не проникают в поры геля и перемещаются с высокой скоростью вместе с растворителем. Мелкие молекулы низкомолекулярной примеси (соли) или другого белка удерживаются гранулами геля и вымываются из колонки медленнее (рис. 1.29). На выходе колонки раствор (элюат) собирают в виде отдельных фракций.

Рис. 1.29. Разделение белков методом гель-фильтрации

Электрофорез основан на свойстве заряженных молекул белка перемещаться в электрическом поле со скоростью, пропорциональной их суммарному заряду. Белки, имеющие при данном значении рН суммарный отрицательный заряд, двигаются к аноду, а положительный - к катоду. Электрофорез проводят на разных носителях: бумаге, крахмальном геле, полиакриламидном геле и др. Скорость перемещения зависит от заряда, массы и формы молекул белка. После завершения электрофореза зоны белков на носителе окрашивают специальными красителями (рис. 1.30, А).

Разрешающая способность электрофореза в геле выше, чем на бумаге, так при электрофорезе белков сыворотки крови на бумаге выделяют 5 фракций (альбумины, α 1 -, α 2 -, β-, γ-глобулины), а в полиакриламидном геле - до 18 фракций (рис. 1.30, Б).


Рис. 1.30. Электрофореграмма белков сыворотки крови здорового человека

А - электрофореграмма белков сыворотки крови на бумаге;

Б - количество белков плазмы разных фракций.

I - γ-глобулины; II - β-глобулины; III - а 2 -глобулины;

IV - а 1 -глобулины; V - альбумины

Ионообменная хроматография основана на разделении белков, отличающихся суммарным зарядом. Раствор белка с определенным значением рН пропускают через хроматографическую колонку, заполненную твердым пористым сорбентом, при этом часть белков задерживается в результате электростатического взаимодействия. В качестве сорбента используют ионообменные вещества: анионообменники (содержащие катионные группы) для выделения кислых белков; катионообменники (содержащие анионные группы) для выделения основных белков.

При пропускании белка через колонку прочность его связывания с ионообменником зависит от величины заряда, противоположного заряду сорбента. Адсорбированные на ионообменном сорбенте белки элюируют буферными растворами с различной концентрацией соли и рН, получая разные фракции белков.

Аффинная хроматография основана на специфичности связывания белка с лигандом, присоединенным к твердому носителю. В качестве лиганда используются субстраты ферментов, простетические группы холопротеинов, антигены и т.д. При пропускании через колонку смеси белков к лиганду присоединяется только комплементарный протеин (рис. 1.31, А), все остальные выходят вместе с раствором. Адсорбированный белок элюируется раствором с другим значением рН (рис. 1.31, Б). Этот метод высокоспецифичен и позволяет получать белковые препараты высокой степени очистки.

Выделение и очистка белка обычно проходят в несколько стадий с использованием различных методов. Последовательность стадий подбирается эмпирическим путем и может различаться для разных протеинов. Высокая степень очистки белков очень важна как при использовании их в качестве лекарственных препаратов (гормон инсулин и т.д.), так и при диагностике различных заболеваний по изменению белкового состава тканей, крови, слюны и др.

Набор белков в клетках различных органов взрослого человека индивидуален и поддерживается относительно постоянным на протяжении жизни. Специализированные ткани могут содержать специфические белки, например гемоглобин в эритроцитах, актин и миозин в мышцах, родопсин в сетчатке глаза, разные типы коллагена в костной и соединительной тканях. Некоторые белки содержатся во многих тканях, но в разных количествах. Отдельные изменения состава

Рис. 1.31. Разделение белков методом аффинной хроматографии

А - связывание выделяемого белка со специфическим лигандом, присоединенным к нейтральному носителю; Б - получение раствора индивидуального белка

белков тканей и крови возможны и связаны прежде всего с режимом питания, составом пищи, физической активностью человека.

При заболеваниях белковый состав крови и клеток тканей может существенно изменяться, часто развивается недостаточность какого-либо белка либо снижение его активности - протеинопатия. Поэтому определение выраженных изменений белкового состава крови и тканей используется для диагностики различных заболеваний в клинических исследованиях.

Исследование однородности белковых препаратов и выделение отдельных белковых фракций производится с помощью различных методов, наиболее важные из которых основаны на применении ультрацентрифугирования, электрофореза, хроматографии, а также на изучении растворимости белков.

1. Методы разделения белков и аминокислот, основанные на различиях веществ в молекулярной массе:

а) ультрацентрифугирование. В ультрацентрифуге сначала осаждаются более тяжелые молекулы, затем менее тяжелые.

б) гель-фильтрация. При этом методе хроматографическая колонка заполняется пористыми гранулами сильно гидратированного углеводного полимера, чаще всего сефадекса (специальным образом обработанные производные высокомолекулярного углевода декстрана). При фильтровании через такую колонку смеси низкомолекулярных и высокомолекулярных белков небольшие белковые молекулы, проникая через поры внутрь гранул сефадекса, будут протекать по колонке медленнее, чем белки, молекулы которых не помещаются в порах гранул и поэтому быстрее вытекают из колонки.

2. Методы разделения белков и аминокислот, основанные на различиях в их кислотно-основных свойствах (или различия их электрических зарядов):

а) метод электрофореза. Смысл электрофореза заключается в разделении находящихся в растворе веществ в электрическом поле на основе различий их электрических зарядов. Электрофоретическое исследование белка производят обычно при нескольких значениях рН, т.к. установлено, что если при одном рН препарат белка ведет себя как однородное вещество, то при другом рН этот же препарат может быть неоднородным.

За последние годы широкое распространение получил электрофорез растворов белков и пептидов на различных носителях – фильтровальной бумаге, целлюлозном или крахмальном порошке, полиакриламидном геле. Эти методы позволяют анализировать чрезвычайно малые количества белков.

б) диск-электрофорез в полиакриламидном геле, при котором смесь белков подвергается одновременному воздействию электрического поля и градиента рН. Он обладает особенно высокой разрешающей способностью.

Фильтрование через гель, так же как и электрофорез в полиакриламидном геле, широко применяется для быстрого приблизительного определения молекулярной массы белков.

в) ионообменная хроматография. В ионообменной хроматографии в качестве носителя используются полимеры, несущие на себе заряд – ионообменные смолы:

· катионообменные смолы (заряженные отрицательно) – обмениваются катионами;

· анионообменные смолы (заряженные положительно) – обмениваются анионами.

Например, часто используется катионообменная полистероидная сульфированная смола. Если раствор аминокислот имеет кислую среду, при загрузке колонки положительно заряженные аминокислоты и белки вытесняют натрий и соединяются с сульфид-анионом. При добавлении гидрооксида натрия рН увеличивается; когда рН достигнет значения, равного изоэлектрической точке молекулы белка, аминокислоты теряют заряд и становятся нейтральными. Под действием силы тяжести аминокислота выходит из колонки, потеряв заряд. Разные белки (аминокислоты) имеют разные значения изоэлектрических точек.

3. Методы разделения, основанные на различиях в веществ по растворимости:

а) метод фракционирования белков солевыми растворами. Основан на том, что каждый индивидуальный белок разделяемой смеси осаждается из нее при определенной концентрации той или иной соли, в то время как другие белки при данной концентрации соли остаются в растворе. Процесс осаждения белка из раствора под действием соли называется высаливанием. При дальнейшем насыщении солью выпадает следующий индивидуальный белок и, таким образом, можно один за другим выделить относительно чистые индивидуальные белки.

б) распределительная хроматография на бумаге. Этот метод основан на различной степени распределения компонентов смеси между двумя несмешивающимися жидкими фазами (подвижной и неподвижной) и заключается в том, что каплю гидролизата белка наносят на полоску хроматографической бумаги, один конец которой опускают в органический растворитель. Растворитель под действием капиллярных сил всасывается бумагой и, проходя по полоске бумаги, увлекает за собой аминокислоты.

Скорость перемещения аминокислот по бумаге зависит от их химического строения и способности растворяться в подвижном и неподвижном растворителях. В качестве подвижного растворителя используют водонасыщенный фенол, n-бутиловый спирт и др. Неподвижным растворителем является вода, пары которой насыщают бумагу. Чем меньше растворимость аминокислот в воде и чем больше их растворимость, например, в феноле, тем быстрее они движутся вслед за фронтом органического растворителя.

4. Определение первичной структуры белка

Наиболее ответственной процедурой при установлении первичной структуры белков является определение последовательности аминокислотных остатков. В настоящее время эту работу ведут преимущественно либо фенилизотиоцианатным методом Эдмана.

Метод Эдмана реализуется в специально созданном для этой цели приборе, получившем название секвенатор (от sequence – последовательность). Метод Эдмана сводится к обработке фенилизотиоцианатом белка или пептида, присоединенного через С-концевую аминокислоту к инертному носителю (полистиролу или пористому стеклу) в колонке секвенатора. После промывки колонки растворителями (метанол, дихлорэтан) образовавшийся фенилтиокарбамилпептид подвергают воздействию безводной трифторуксусной кислоты, в результате чего высвобождается анилинотиозолинон и в его составе N-концевая аминокислота, а укороченный на один аминокислотный остаток пептид или белок остается связанным с носителем.

Раздел 3. НУКЛЕОТИДЫ И НУКЛЕИНОВЫЕ КИСЛОТЫ

Лекция 4. Строение и функции нуклеотидов

1. Общая характеристика нуклеотидов

Нуклеотиды – сложные органические вещества, состоящие из 3-х обязательных компонентов:

1) азотистого основания;

2) пятиуглеродного сахара;

3) остатка фосфорной кислоты.

Сложные органические соединения, состоящие только из азотистого основания и сахара-пентозы, называются нуклеозидами. Следовательно, нуклеотиды – фосфорнокислые эфиры нуклеозидов.

Азотистые основания

Азотистые основания являются производными двух гетероциклических соединений – пурина и пиримидина:

· пуриновые азотистые основания:

Аденин Гуанин

· пиримидиновые азотистые основания:

Урацил Цитозин Тимин

Пятиуглеродные сахара:

β-рибоза β-дезоксирибоза

Фосфорная кислота

В состав нуклеотидов обязательно входит остаток фосфорной (ортофосфорной) кислоты.

Помимо указанных выше трех обязательных компонентов, в состав молекул нуклеотидов могут входит и другие функциональные группы.

При образовании нуклеозидов первый атом рибозы (дезоксирибозы) связывается с N-1 атомом пиримидинового или N-9 атомом пуринового основания.

С рибозой соединяются аденин, образуя аденозин; гуанин, образуя гуанозин; цитозин, образуя цитидин; урацил, образуя уридин.

С дезоксирибозой соединяются аденин, гуанин, цитозин и тимин, образуя соответственно дезоксиаденозин, дезоксигуанозин, дезоксицитидин, тимидин.

Наиболее распространено в природе присоединение по 5 положению сахара и оно не указывается.

В организме нуклеотиды являются мономерами нуклеиновых кислот, либо функционируют самостоятельно. В зависимости от того, в каком количестве в нуклеотидах представлены их основные компоненты, все нуклеотиды подразделяют на мононуклеотиды, динуклеотиды и полинуклеотиды (полинуклеиновые кислоты).

2. Строение и функции моно- и динуклеотидов

Моно- и динуклеотиды не входят в состав нуклеиновых кислот; они функционируют самостоятельно. В состав самостоятельных нуклеотидов в качестве сахара всегда входит рибоза.

К мононуклеотидам относятся АТФ, АДФ, АМФ, коэнзим А и другие нуклеотиды.

АТФ – аденозинтрифосфорная кислота:

АТФ – энергетический эквивалент клетки, она является посредником между реакциями, идущими с выделением энергии (экзергоническими) и реакциями, идущими с поглощением энергии (эндергоническими). Иными словами, в форме АТФ клеткой запасается энергия, которая затем используется для процессов жизнедеятельности.

Химические связи между различными атомами в органических соединениях делятся на 2 типа:

1) нормальные

2) макроэргические

Нормальные связи – связи, при возникновении или распаде которых изменение уровня свободной энергии соединений составляет 12,5 Дж/моль.

Макроэргические связи – связи, при возникновении или распаде которых уровень свободной энергии соединения составляет 25-50 кДж/моль вещества.

Понятие «макроэргическая связь» учитывает энергетический эффект преобразованной связи посредством химической реакции вещества с нормальными свойствами.

Связи между остатками фосфорной кислоты являются макроэргическими – при их гидролизе выделяется энергия. Такие связи принято обозначать волнистой черточкой.

Энергия 1-й молекулы АТФ может служить только для 1-й реакции. АДФ и АМФ – не способны быть источником энергии.

В живых клетках имеются 3 способа образования АТФ:

1) Субстратное фосфорилирование.

2) Окислительное фосфорилирование.

3) Фотосинтетическое фосфорилирование.

Коэнзим А (КоА) . КоА является переносчиком ацильных групп; участвует во многих процессах. В его состав входит аденин, рибоза, пирофосфат, пантотеновая кислота (витамин В 3) и тиоламин. Упрощенно коэнзим А представляют в виде следующей формулы: HS-KoA. При взаимодействии коэнзима А с уксусной кислотой образуется ацетилкоэнзим А, в молекуле которого появляется макроэргическая (высокоэнергетическая):

Ацетилкоэнзим А

Ацетилкоэнзим А является ключевым метаболитом, благодаря которому осуществляется не только распад и синтез различных веществ, но и взаимосвязь между процессами обмена белков, липидов и углеводов.

К динуклеотидам относятся НАД, НАДФ, ФАД и др.

НАД – никотинамидадениндинуклеотид;

НАДФ – никотинамидаденин динуклеотид фосфат.

В состав этих динуклеотидов входит никотинамид (амид никотиновой кислоты, являющееся важным витамином - витамином В 5). Молекула НАДФ идентична по структуре НАД с той лишь разницей, что у НАДФ у С-3 атома рибозы ОН-группа замещена остатком молекулы фосфорной кислоты.

Молекулы НАД и НФДФ способны к обратимому окислению и восстановлению (благодаря окислительно-восстановительной способности никотинамида), поэтому они участвуют в качестве переносчиков водорода; в реакциях биологического окисления НАД и НАДФ являются кофакторами ферментов дегидрогеназ.

Структура НАД (окисленная форма)

ФАД – флавинадениндинуклеотид. В его состав входит рибофлавин (витамин В 2).

Структура ФАД (окисленная форма)

ФАД, как и другие динуклеотиды, способен обратимо окисляться и восстанавливаться, присоединяя к своей молекуле 2 атома водорода, поэтому он участвует в биологическом окислении в качестве переносчика водорода. Является кофактором дегидрогеназ, так же, как и НАД и НАДФ.

3. Строение и функции нуклеиновых кислот

Самое замечательное свойство живых клеток – их способность воспроизводить себе подобных с почти предельной точностью и не один-два раза, а в сотнях и тысячах генераций.

Живые клетки обладают такой способностью благодаря наличию в них нуклеиновых кислот.

ДНК – дезоксирибонуклеиновая кислота;

РНК – рибонуклеиновая кислота.

ДНК и РНК – высокомолекулярные соединения, которые построены на основе нуклеотидов, соединенных 3, 5 - фосфодиэфирными связями. Их молекулярная масса сильно варьирует (от 15 тыс. до 1 млрд).

Нуклеиновые кислоты хорошо растворяются в фенолах; плохо – в слабых растворах кислот.

Различия между ДНК и РНК:

1. В составе ДНК – аденин, гуанин, цитозин, тимин;

в составе РНК – аденин, гуанин, цитозин, урацил.

2. В составе ДНК – дезоксирибоза; в составе РНК – рибоза.

3. Молекулы ДНК двухцепочечные; РНК – одноцепочечные.

Особенности структуры ДНК

· ДНК состоит из двух правозакрученных полинуклеотидных спиралей, имеющих общую ось.

· Две цепи ДНК антипараллельны, т.е. 3 и 5 фосфодиэфирные мостики ориентированы в противоположных направлениях.

· Основания плоские, гидрофобные, расположены в параллельных плоскостях и перпендикулярно длинной оси спиралей.

· Основания 2-х цепей спарены. Напротив А-Т; напротив Г-Ц;

Спаренные основания являются комплементарными по отношению друг к другу.

Комплементарность – пространственная взаимодополняемость поверхностей взаимодействующих молекул или их частей, приводящая к возникновению между ними вторичных связей.

Между А и Т возникает 2 водородные связи; между Г и Ц – 3 водородные связи.

Остатки сахаров и фосфорные группы остаются на поверхности молекулы и контактируют с водой. Отрицательно заряженные группы остатков фосфорной кислоты легко вступают во взаимодействие с белками, среди которых преобладают гистоны – белки, отличающиеся своей основной природой.

4. Нуклеиновые кислоты отличаются друг от друга по функциям.

Функции ДНК – хранение, репликация (удвоение) и передача наследственной информации (наследственная информация – это информация о первичной структуре белков).

Функции РНК определяются типом РНК.

Типы РНК:

а) м-РНК – матричная или и-РНК – информационная.

Матричная РНК выполняет функцию переноса наследственной информации из ядра клетки от ДНК в цитоплазму, к месту синтеза белка.

Реализация наследственной информации – синтез белка.

Существуют сотни тысяч видов м-РНК в клетке.

б) т-РНК – транспортная.

Переносит к месту синтеза белка необходимые аминокислоты.

в) р-РНК – рибосомальная.

Рибосомы – органоиды, выполняющие функции синтеза белка.

5. Нуклеиновые кислоты отличаются по локализации.

Основное количество ДНК находится в ядре клетки (в составе хромосом). Часть ДНК располагается в митохондриях и хлоропластах (ее называют цитоплазматической ДНК). РНК находится в цитоплазме.

4. Основные биохимические функции нуклеотидов

Таким образом, нуклеотиды объединяют группу веществ, которые выполняют самые разнообразные функции:

1. Являются строительными блоками нуклеиновых кислот, участвуют в молекулярных механизмах, с помощью которых генетическая информация хранится, реплицируется и транскрибируется.

2. Выполняют важную роль в энергетическом (фосфорном) обмене, в аккумулировании и переносе энергии.

3. Служат кофакторами ферментов, относящихся к различным классам.

4. Играют важную роль в синтезе и распаде углеводов, жирных кислот и липидов.

5. Некоторые нуклеотиды являются посредниками в сложных процессах сигнальной трансдукции (передачи сигналов в живых клетках).

Раздел 4. ФЕРМЕНТЫ

Лекция 5. Строение, механизм действия и классификация ферментов

1. Строение и основные свойства ферментов

Ферменты (энзимы) – вещества белковой природы, присутствующие во всех живых клетках и выполняющие роль катализаторов биохимических процессов.

По своему составу ферменты делятся на:

1) простые – состоят только из аминокислот;

2) сложные – состоят из 2-х частей:

Из белковой, которая называется апоферментом и

Небелковой части – кофактора.

Комплекс апофермента и кофактора называется холоферментом.

Ни апофермент, ни кофактор по отдельности не способны катализировать реакцию. Функционально активен только их комплекс.

Виды кофакторов:

По своей химической природе кофакторы могут быть представлены как органическими, так и неорганическими соединениями.

Органические кофакторы можно разделить на две группы:

1) простетические группы – кофакторы, которые прочно соединены с апоферментом и при выделении из организма не отсоединяются от белковой части.

Например, ФАД в составе фермента сукцинатдегидрогеназы из цикла Кребса.

2) коферменты – кофакторы, которые соединены с апоферментами слабыми связями и легко от него отщепляются: например, НАД, НАДФ, а иногда и ФАД.

Неорганические кофакторы представлены ионами металлов (чаще всего ионами железа, меди, марганца, цинка и т.д.). Ионы металлов как кофакторы либо непосредственно участвуют в акте катализа, либо образуют мостики, связывающие фермент с субстратом.

Субстрат (S) – вещество, химические превращения которого катализирует фермент.

Строение фермента, или энзима (Е):

Поскольку молекулы субстрата обычно мельче молекул ферментов, то в непосредственный контакт с субстратом вступает только часть молекулы фермента – активный центр. Причем, геометрическая форма поверхности участка молекулы субстрата является комплементарной поверхности активного центра.

Активный центр фермента – уникальная комбинация аминокислотных остатков, обеспечивающая взаимодействие с молекулой субстрата и участвующая в акте катализа. У сложных ферментов в состав активного центра обязательно входит кофактор.

Активный центр может иметь 2 участка:

· якорный (субстратный);

· каталитический.

Якорный участок обладает геометрическим сходством (соответствием) молекулы субстрата и обеспечивает специфичность действия фермента.

Сходство между ферментами и небиологическими катализаторами

1. Любой катализатор (неорганический и органический) уменьшает энергию активации молекулы. Энергия активации – количество энергии в калориях, необходимая для перевода всех молекул 1-го моля вещества в активированное состояние, т.е. состояние, при котором они способны вступить в химическую реакцию.

2. Любой катализатор может ускорять только химические реакции, возможные с точки зрения термодинамики.

3. Катализаторы не изменяют направление химической реакции.

4. Катализаторы не расходуются в процессе реакции.

Отличия ферментов от неорганических катализаторов

1. Катализ осуществляется в очень мягких условиях (Т, рН)

2. Высокая эффективность: ферменты увеличивают скорость реакции

в 10 10 - 10 12 раз.

Пример: в организме есть фермент каталаза (кофактор - Fe).

1 мг железа в каталазе действует как 10 т неорганического железа.

3. Специфичность действия. Каждый фермент ускоряет только 1 реакцию. Виды специфичности:

Абсолютная (1 фермент действует только на 1 субстрат, например, фермент уреаза катализирует гидролиз мочевины);

Относительная (1 фермент может действовать на группу сходных по строению субстратов).

4. Возможность тонкой и точной регуляции скорости реакции изменением условий среды (связано с белковой природой фермента)

Для каждого фермента есть свой температурный оптимум.

Пример: температура тела – 36,6 град.; при Т=40-41град. может быть необратимая денатурация. При низких температурах наблюдается снижение скорости ферментативного катализа (из-за броуновского движения молекул).

Ферменты очень чувствительны к изменению кислотности среды, в которой они действуют. Активность фермента проявляется в пределах довольно узкой зоны рН, называемой оптимумом рН. Можно считать, что для каждого фермента имеется определенная оптимальная концентрация протонов, при которой он наиболее активен.

Изменение рН приводит к изменению зарядов на активном центре и на молекуле в целом; в результате этого изменяется конформация белковой молекулы, вследствие чего нарушается пространственное соответствие активного центра и субстрата, а значит, скорость реакции снижается.

5. Возможность насыщения фермента субстратом (особенности кинетики).

6. Ферментативный катализ – это строго запрограммированный процесс (1 реакция; 1 субстрат; 1 фермент) – серия элементарных превращений вещества, строго организованных в пространстве и времени.

2. Механизм действия ферментов

Действие фермента основано на образовании фермент-субстратного комплекса. Под действием субстрата изменяется конформация фермента, затем изменяется субстрат.

Механизм действия ферментов можно представить в виде следующей схемы:

E+S → ES → EZ → EP → E+P

Можно выделить 4 фазы:

1. Между субстратом и ферментом возникают соединения (ES), в которых соединения связаны ионной, ковалентной или другой связью.

2. Субстрат под действием присоединенного фермента претерпевает изменения (S→Z), делающие его более доступным для соответствующей реакции.

3. Происходит химическая реакция с образованием фермент-продуктного комплекса (EP).

4. Продукты реакции высвобождаются из фермент-продуктного комплекса.

3. Номенклатура и классификация ферментов

Номенклатура ферментов (правила образования их названий)

1. Случайная (по случайным признакам) – тривиальная

Пример: папаин (carica papaja – из дерева).

2. Рациональная: субстрат +”аза” (липиды – липаза)

3. Систематическая: субстрат + тип катализируемой реакции + «аза» (лактатдегидрогеназа), либо субстрат + название класса, к которому относится данный фермент+ «аза» (лактат-оксидоредуктаза).

Классификация ферментов

Принята в 1961 году.

В основу классификации положен тип катализируемой реакции:

1. Оксидоредуктазы (сложные ферменты, катализирующие окислительно-восстановительные реакции). Пример: изоцитратдегидрогеназа из цикла Кребса.

2. Трансферазы (катализируют реакции переноса функциональных групп или молекулярных остатков между молекулами). Пример: киназы – трансферазы 1-й стадии гликолиза.

3. Гидролазы (простые ферменты, катализируют реакции гидролиза крахмала, олигосахаридов, жиров). Примеры: липаза, инвертаза, мальтаза и др.

4. Лиазы (катализируют негидролитическое отщепление от субстратов определенных групп атомов с образованием двойной связи, либо присоединением по двойной связи). Пример: альдолаза из гликолиза.

5. Изомеразы (катализируют реакции изомеризации – пространственной или структурной перестройки в пределах 1-й молекулы). Пример: триозофосфатизомераза из гликолиза.

6. Лигазы (часто называются синтетазами) – катализируют реакции синтеза, сопряженные с распадом богатых энергией связей (АТФ).

Каждый фермент имеет 4-х-значный шифр: класс-подкласс-подподкласс- индивидуальный номер фермента.

4. Кинетика ферментативных реакций

Особенностью кинетики ферментативной реакции является насыщение фермента субстратом, при котором дальнейшее увеличение [S] не приводит к увеличению скорости реакции. Эмпирическим путем установлено, что кинетика ферментативной реакции может быть выражена следующим графиком:

Концентрация субстрата, при которой фермент достигает насыщения, является постоянной характеристикой для каждого конкретного фермента.

Кинетику ферментативной реакции можно описать с помощью уравнения, которое было выведено теоретическим путем учеными Михаэлисом и Ментен, и именно в честь них было названо.

Уравнение Михаэлиса - Ментен

К м – константа Михаэлиса. Это такая концентрация субстрата, при которой скорость реакции равна половине максимальной.

Константа Михаэлиса характеризует сродство фермента к субстрату: чем меньше эта константа, тем больше сродство фермента к субстрату, тем эффективнее реакция.

5. Регуляция ферментативных процессов в клетке

Многочисленные способы регуляции ферментативных процессов можно разделить на две группы:

1. Регуляция содержания фермента за счет изменения скорости его синтеза и распада. Следует отметить следующие процессы:

репрессия – процесс подавления (или снижения) скорости синтеза фермента;

индукция – процесс ускорения синтеза ферментов под действием специфических низкомолекулярных соединений – индукторов.

2. Регуляция активности имеющихся в клетке ферментов.

а) путем изменения температуры, значения рН, количества субстрата, кофакторов и т.д.;

б) аллостерическая регуляция (характерна только для аллостерических ферментов). Аллостерическими называют ферменты, имеющие кроме активного центра дополнительный центр связывания (аллостерический центр). Активность аллостерических ферментов регулируется путем изменения конформации молекул ферментов, вызванного присоединением специального метаболита к аллостерическому центу. Метаболит-регулятор (аллостерический эффектор) выполняет функции либо активатора, либо ингибитора;

в) ковалентная модификация ферментов – регуляция каталитической активности ферментов может осуществляться за счет ковалентного присоединения фосфатной группы или нуклеотида. Например, фосфорилированная форма гликогенфосфорилазы обладает более высокой каталитической активностью;

г) изменение активности ферментов с помощью активаторов – химических соединений, повышающих активность ферментов (например, аминокислота цистеин и трипептид глутатион активируют действие многих протеаз).

д) изменение активности ферментов с помощью ингибиторов – химических соединений, подавляющих активность ферментов.

Ингибирование

Ингибирование – снижение или полное подавление активности ферментов под действием определенных веществ (ингибиторов).

Ингибирование может быть двух основных видов: небратимое и обратимое.

При необратимом ингибировании фермент и ингибитор образуют недиссоциирующий комплекс. Необратимое ингибирование в организме встречается редко и если оно есть, то из-за веществ, поступающих извне.

При обратимом ингибировании фермент и ингибитор образуют диссоциирующий комплекс.

Обратимое ингибирование, в свою очередь, делится на конкурентное и неконкурентное.

Конкурентное ингибирование – ингибирование, при котором субстрат и ингибитор обладают сходным строением и конкурируют за активный цент фермента. Конкурентное ингибирование в организме часто встречается и является способом регулирования активности фермента.

Скорость реакции при конкурентном ингибировании зависит от соотношения концентраций субстрата и ингибитора. Чем выше концентрация субстрата, тем выше вероятность формирования комплекса, тем выше скорость реакции. Таким образом, конкурентное ингибирование можно подавить путем увеличения концентрации субстрата.

Неконкурентное ингибирование – ингибирование, при котором субстрат и ингибитор взаимодействуют с разными частями молекулы фермента. При этом ингибитор, соединяясь с молекулой фермента, так модифицирует его структуру, что достижение максимальной скорости реакции невозможно.

При неконкурентном ингибировании увеличение концентрации субстрата не приводит к устранению действия ингибитора. Неконкурентное ингибирование в организме, как правило, связано с поступлением в организм тяжелых металлов.

Раздел 5. УГЛЕВОДЫ И ИХ ОБМЕН

Лекция 6. Химическое строение и свойства углеводов

1. Общая характеристика и классификация углеводов

К углеводам относятся соединения, обладающие разнообразными и часто совершенно противоположными свойствами. Среди них есть вещества низкомолекулярные и высокомолекулярные, кристаллические и аморфные, хорошо растворимые в воде и совершенно в ней нерастворимые, способные окисляться и сравнительно устойчивые к действию окислителей.

Общая формула, характерная для подавляющего числа углеводов, С n (Н 2 О) m

По химической природе углеводы делятся на:

· моносахариды (простые сахара);

· олигосахариды;

· полисахариды.

Моносахариды содержат 3-8 атомов углерода и не подвергаются гидролизу с образованием простых углеводородов.

Олигосахариды – полимеры моносахаридов, которые содержат 2-10 остатка моносахаров.

Полисахариды – полимеры моносахаридов, которые содержат более 10 остатков моносахаров.

2. Строение, свойства и функции моносахаридов

Моносахариды делятся на следующие группы:

1. По количеству атомов углерода:

· Триозы (3)

· Тетрозы (4)

· Пентозы (5)

· Гексозы (6)

· Гептозы (7)

· Октозы (8)

2. По химическому строению:

· Альдозы

Все моносахариды являются спиртами, либо альдегидоспиртами, либо кетоспиртами. В их молекулах, как правило, количество атомов углерода равно количеству молекул воды (т.е. m = n).

D-глюкоза (альдоза) D-фруктоза (кетоза)

Альдозы и кетозы являются изомерами.

Основные химические свойства моносахаридов:

1.Мутаротация – переход аномера из одной формы в другую (например, α-глюкоза →β-глюкоза). Аномерами называют энантиомерные формы моносахаридов, различающиеся положением полуацетального гидроксила.

2. Восстановление до многоатомных спиртов (например, глюкоза восстанавливается до сорбита, рибоза – до рибита).

3. Окисление с образованием соответствующих кислот (например, в зависимости от окисляемой группы глюкоза может образовывать глюконовую, глюкуроновую и глюкаровую кислоты).

4. Эпимеризация (например, в слабощелочной среде D-глюкоза находится в равновесии с кетогексозой (D-фруктозой) и альдогексозой (D-маннозой).

5. Образование гликозидов. Конденсация аномерной ОН-группы со спиртовой группировкой молекулы приводит к образованию О-гликозидов. Именно за счет этих связей построены олиго- и полисахариды. При взаимодействии аномерной ОН-группы с NH 2 -группой образуются N-гликозиды.

6. Этерификация. Гидроксильные группы моносахаридов образуют эфиры с различными кислотами. В метаболизме особо важную роль играет фосфорилирование сахаров.

7. Способность реагировать с азотсодержащими соединениями при высокой температуре с образованием специфических окрашенных веществ – меланоидинов.

8. Способность глюкозы (и других гексоз) подвергаться расщеплению (путем гликолиза) и сбраживанию микроорганизмами.

Основные функции моносахаридов:

1. Энергетическая (моносахариды легко расщепляются с выделением энергии, которая затрачивается на образование АТФ).

2. Пластическая (метаболическая). Моносахариды являются предшественниками для образования многих важных веществ: резервных и структурных полисахаридов, аминокислот, жирных кислот, глицерина и др.

3. Строение, свойства и функции олигосахаридов

Олигосахариды различаются по следующим показателям:

1. Количество моносахаридов.

2. Качественный состав.

3. Характер гликозидной связи между моносахаридами.

В растворах моносахариды всегда присутствуют в циклической форме; в состав олиго- и полисахаридов они также входят в циклической форме.

Первый углеродный атом, соединенный с кислородом, является наиболее реакционноспособным. Как правило, связь образуется за счет гликозидного (полуацетального) гидроксила.

Для олигосахаридов характерны некоторые свойства, отмеченные для моносахаридов. Следует также отметить, что олигосахариды, поступающие в организм человека с пищей, в желудочно-кишечном тракте подвергаются гидролизу до своих структурных блоков – моносахаридов. Поэтому в клетки они попадают уже в виде простых сахаров и, соответственно, выполняют те же функции, что и моносахариды.

Из олигосахаридов наибольшее распространение получили дисахариды. Рассмотрим химический состав наиболее важных из них.

Сахароза состоит из остатков α-глюкозы и β-фруктозы, соединенных β-гликозидной (или фруктозидной) связью. Гидролиз сахарозы происходит при участии фермента инвертазы (сахаразы):

сахароза α-глюкоза β-фруктоза

Инвертаза в больших количествах содержится в дрожжах и в кишечнике организмов. Смесь глюкозы и фруктозы в равных количествах, которая образуется при гидролизе сахарозы, называется инвертным сахаром.

Мальтоза – дисахарид, состоящий из 2-х остатков α-глюкозы. Это основной продукт гидролиза крахмала.

Мальтоза → α-глюкоза + α-глюкоза

Гидролиз мальтозы проходит при участии фермента мальтазы.

Мальтаза есть в слюне и поджелудочном соке.

Лактоза – молочный сахар, образуется в организме животных.

Лактоза = β-галактоза + α-глюкоза.Гидролиз лактозы катализируется ферментом лактазой.

Лактаза очень активна у младенцев; у некоторых взрослых лактаза не сохраняется, что влечет за собой непереносимость молока.

4. Строение, свойства и функции полисахаридов

Полисахариды подразделяются на гомосахариды и гетеросахариды.

В состав гомосахаридов входят моносахариды одного типа. Если мономер–фруктоза, то полисахарид нзывается фруктан; галактоза – галактан; глюкоза – глюкан.

Мономерами гетерополисахаридов являются моносахариды 2-х или нескольких типов. К примеру, арабиноза и глюкоза входят в состав арабиноглюканов; арабиноза и ксилоза – арабиноксиланов.

Крахмал (гомосахарид) – запасной полисахарид растений; существует в 2-х формах: амилоза и амилопектин.

Амилоза – линейный полисахарид, состоит из остатков α-глюкозы, соединенных α –1, 4 связью.

Амилопектин – разветвленный полисахарид, в котором на каждые 12 остатков глюкозы, соединенных α –1, 4 связью, приходится α –1, 6 связь.

Эти вещества сильно различаются по своим физическим и химическим свойствам. Так, например, от йода амилоза окрашивается в синий цвет, а амилопектин – в красно-фиолетовый. Они различаются и по растворимости: амилоза легко растворяется в теплой воде и дает растворы со сравнительно невысокой вязкостью, в то время как амилопектин растворяется в воде лишь при нагревании под давлением и дает очень вязкие растворы.

Гликоген («животный крахмал») – по строению сходен с крахмалом, но характеризуется большей разветвленностью.

Является резервным питательным веществом (образуется главным образом в печени и мышцах).

Целлюлоза (клетчатка) – полисахарид, состоящий из большого количества остатков β-глюкопиранозы.

Функции полисахаридов:

1. Запас питательных веществ (крахмал, гликоген – наиболее распространенные вещества).

2. Источники энергии (при использовании их в качестве источников энергии они должны сначала подвергаться расщеплению до моносахаридов).

3. Структурная (целлюлоза – образует клеточные стенки у растений, хитин – у животных, муреин – у бактерий).

После экстракции смеси белков из биологического материала проводят ее разделение на индивидуальные фракции белков. Разработано несколько методов фракционирования белков, основанных на различных физико-химических свойствах белков.

осаждение белков в изоэлектрической точке – в основе метода лежит свойство белков в изоэлектрической точке выпадать в осадок вследствие нейтрализации заряда белковой молекулы. Для каждого белка значение изоэлектрической точки строго индивидуально, поэтому данным методом возможно выделение индивидуальных белков (подробнее о методе см. лабораторную работу №3 в курсе «Биохимия»).

фракционирование белков методом высаливания – основано на различной растворимости белков в концентрированных растворах нейтральных солей, в зависимости от молекулярной массы (подробнее о методе см. лабораторную работу №3 в курсе «Биохимия»).

метод электрофоретического разделения белков на фракции – описан в разделе физико-химические свойства белков.

Кроме представленных выше методов для разделения белков на фракции широко используют хроматографические методы . Чаще всего используют колоночную хроматографию.

Особенностью данного метода является то, что смесь молекул различных белков и пептидов пропускают через колонку, содержащую твердый пористый материал (матрикс). В результате взаимодействия с матриксом различные белки проходят через колонку с различной скоростью. После того как белки достигнут в определенной последовательности дна колонки, их собирают отдельными фракциями в пробирки.

Выделяют три основных вида колоночной хроматографии:

ионообменная – для хроматографии белков применяют ионообменники на основе целлюлозы или других гидрофильных полимеров, например, диэтиламиноэтилцеллюлозу (ДЭАЭ-целлюлоза), содержащую катионные группы (отрицательный заряд) или содержащую карбоксиметилцеллюлозу (КМ-целлюлоза), содержащую аминные группы (положительный заряд):

Прочность связывания белков с ДЭАЭ-целлюлозой тем выше, чем больше в молекуле белка карбоксильных групп. Белки, адсорбированные на ДЭАЭ-целлюлозе, можно смыть (элюировать) из колонки растворами с возрастающей концентрацией хлорида натрия. Вначале элюируются слабосвязанные белки, а по мере увеличения концентрации соли и другие белки, в порядке возрастания их сродства к ДЭАЭ-целлюлозе.

Аналогично применяют и КМ-целлюлозу, но сродство белков к ней прямо пропорционально числу аминогрупп в молекуле белка.

Для снятия связанного белка также изменяют рН элюента.

хроматография гель-фильтрацией – имеет второе название «метод молекулярных сит». В качестве сит используют сефадекс (полисахарид декстран, обработанный эпихлоридгидрином). Зерна сефадекса набухают в воде и образуют гель. Набухшие гранулы имеют поры определенного диаметра.

Разделение основано на том, что зерна сефадекса (поры гранул) непроницаемы или ограничено проницаемы для веществ с большой молекулярной массой, а небольшие молекулы свободно диффундируют (проникают) в поры зерен.

Гелеобразную массу набухшего сефадекса помещают в стеклянную колонку (трубку), на поверхности геля наносят слой белкового раствора (рис. 12, а) и затем через колонку пропускают буферный раствор (элюирующая жидкость). Белки проходят вдоль колонки между гранулами тем медленнее, чем меньше их молекулярная масса, так как молекулы белков с еще меньшей молекулярной массой легче диффундируют внутрь гранул (в поры) (рис. 12).

Рис. 12. Фракционирование белков методом гель-фильтрации

Белки вымываются (элюируются) из колонки в порядке убывания молекулярной массы. Следовательно, первыми элюируются крупные белковые молекулы (рис. 12, б), которые не диффундируют в зерна, затем мелкие молекулы и в последнюю очередь низкомолекулярные примеси.

Этот метод применяют не только для фракционирования белков по молекулярной массе, но и для очистки их от низкомолекулярных примесей.

аффинная хроматография – или хроматография по сродству. Принцип метода заключается в том, что происходит избирательное взаимодействие белков со специфическими веществами – лигандами, закрепленными на носителях (рис. 13).

В качестве носителя используют активированную бромцианом сефарозу. К сефарозе присоединяют лиганды различного происхождения – субстрат, или антиген, или рецептор, которые будут афинно связывать только один белок из смеси:

– субстрат → фермент;

– антиген → антитело;

– гормон → рецептор данного гормона.

Другие белки, не связавшиеся с лигандом, удаляются путем промывания колонки.

Рис. 13. Механизм аффинной хроматографии

Снятие с колонки афинно закрепленного белка осуществляется с помощью буферного раствора (элюента). В состав буфера вводят детергент, который ослабляет связи между белком и лигандом, или через колонку пропускают раствор с высокой концентрацией свободного лиганда. В этом случае белок легче связывается со свободным лигандом и вымывается (элюируется) из колонки.

Начальная школа