Решить однородное дифференциальное уравнение первого порядка. Однородные уравнения. Исчерпывающий гид (2019)

Например, функция
- однородная функция первого измерения, так как

- однородная функция третьего измерения, так как

- однородная функция нулевого измерения, так как

, т.е.
.

Определение 2. Дифференциальное уравнение первого порядкаy " = f (x , y ) называется однородным, если функцияf (x , y ) есть однородная функция нулевого измерения относительноx иy , или, как говорят,f (x , y ) – однородная функция степени нуль.

Его можно представить в виде

что позволяет определить однородное уравнение как такое дифференциальное, которое можно преобразовать к виду (3.3).

Замена
приводит однородное уравнение к уравнению с разделяющимися переменными. Действительно, после подстановкиу = xz получим
,
Разделяя переменные и интегрируя, найдем:


,

Пример 1.Решить уравнение.

Δ Полагаем у = zx ,
Подставляем эти выраженияy иdy в данное уравнение:
или
Разделяем переменные:
и интегрируем:
,

Заменяя z на, получим
.

Пример 2. Найти общее решение уравнения.

Δ В данном уравнении P (x ,y ) =x 2 -2y 2 ,Q (x ,y ) =2xy – однородные функции второго измерения, следовательно, данное уравнение является однородным. Его можно представить в виде
и решать так же, как и представленное выше. Но используем другую форму записи. Положимy = zx , откудаdy = zdx + xdz . Подставляя эти выражения в исходное уравнение, будем иметь

dx +2 zxdz = 0 .

Разделяем переменные, считая

.

Интегрируем почленно это уравнение

, откуда

то есть
. Возвращаясь к прежней функции
находим общее решение

Пример 3 . Найти общее решение уравнения
.

Δ Цепочка преобразований: ,y = zx ,
,
,
,
,
,
,
,
, ,
.

Лекция 8.

4. Линейные дифференциальные уравнения первого порядка Линейное дифференциальное уравнение первого порядка имеет вид

Здесь – свободный член, называемый также правой частью уравнения. В этом виде будем рассматривать линейное уравнение в дальнейшем.

Если
0, то уравнение (4.1а) называется линейным неоднородным. Если же
0, то уравнение принимает вид

и называется линейным однородным.

Название уравнения (4.1а) объясняется тем, что неизвестная функция y и её производнаявходят в него линейно, т.е. в первой степени.

В линейном однородном уравнении переменные разделяются. Переписав его в виде
откуда
и интегрируя, получаем:
,т.е.


При делении на теряем решение
. Однако оно может быть включено в найденное семейство решений (4.3), если считать, чтоС может принимать и значение 0.

Существует несколько методов решения уравнения (4.1а). Согласно методу Бернулли , решение ищется в виде произведения двух функций отх :

Одна из этих функций может быть выбрана произвольно, так как лишь произведение uv должно удовлетворять исходному уравнению, другая определяется на основании уравнения (4.1а).

Дифференцируя обе части равенства (4.4), находим
.

Подставляя полученное выражение производной , а также значениеу в уравнение (4.1а), получаем
, или

т.е. в качестве функции v возьмём решение однородного линейного уравнения (4.6):

(Здесь C писать обязательно, иначе получится не общее, а частное решение).

Таким образом, видим, что в результате используемой подстановки (4.4) уравнение (4.1а) сводится к двум уравнениям с разделяющимися переменными (4.6) и (4.7).

Подставляя
иv (x) в формулу (4.4), окончательно получаем

,

.

Пример 1. Найти общее решение уравнения

 Положим
, тогда
. Подставляя выраженияив исходное уравнение, получим
или
(*)

Приравняем нулю коэффициент при :

Разделяя переменные в полученном уравнении, имеем


(произвольную постояннуюC не пишем), отсюдаv = x . Найденное значениеv подставляем в уравнение (*):

,
,
.

Следовательно,
общее решение исходного уравнения.

Отметим, что уравнение (*) можно было записать в эквивалентном виде:

.

Произвольно выбирая функцию u , а неv , мы могли полагать
. Этот путь решения отличается от рассмотренного только заменойv наu (и, следовательно,u наv ), так что окончательное значениеу оказывается тем же самым.

На основании изложенного выше получаем алгоритм решения линейного дифференциального уравнения первого порядка.


Отметим далее, что иногда уравнение первого порядка становится линейным, если у считать независимой переменной, аx – зависимой, т.е. поменять ролиx иy . Это можно сделать при условии, чтоx иdx входят в уравнение линейно.

Пример 2 . Решить уравнение
.

    По виду это уравнение не является линейным относительно функции у .

Однако если рассматривать x как функцию оту , то, учитывая, что
,его можно привести к виду

(4.1 б )

Заменив на,получим
или
. Разделив обе части последнего уравнения на произведениеydy , приведем его к виду

, или
. (**)

Здесь P(y)=,
. Это линейное уравнение относительноx . Полагаем
,
. Подставляя эти выражения в (**), получаем

или
.

Выберем vтак, чтобы
,
, откуда
;
. Далее имеем
,
,
.

Т.к.
, то приходим к общему решению данного уравнения в виде

.

Отметим, что в уравнение (4.1а) P (x ) иQ (x ) могут входить не только в виде функций от x , но и констант:P = a ,Q = b . Линейное уравнение

можно решать и с помощью подстановки y=uv и разделением переменных:

;
.

Отсюда
;
;
; где
. Освобождаясь от логарифма, получаем общее решение уравнения

(здесь
).

При b = 0 приходим к решению уравнения

(см. уравнение показательного роста (2.4) при
).

Сначала интегрируем соответствующее однородное уравнение (4.2). Как указано выше, его решение имеет вид (4.3). Будем считать сомножитель С в (4.3) функцией отх , т.е. по существу делаем замену переменной

откуда, интегрируя, находим

Отметим, что согласно (4.14) (см. также (4.9)), общее решение неоднородного линейного уравнения равно сумме общего решения соответствующего однородного уравнения (4.3) и частного решения неоднородного уравнения, определяемого вторым слагаемым, входящим в (4.14) (и в (4.9)).

При решении конкретных уравнений следует повторять приведённые выше выкладки, а не использовать громоздкую формулу (4.14).

Применим метод Лагранжа к уравнению, рассмотренному в примере 1 :

.

Интегрируем соответствующее однородное уравнение
.

Разделяя переменные, получаем
и далее
. Решение выражения формулойy = Cx . Решение исходного уравнения ищем в видеy = C (x )x . Подставив это выражение в заданное уравнение, получим
;
;
,
. Общее решение исходного уравнения имеет вид

.

В заключение отметим, что к линейному уравнению приводится уравнение Бернулли

, (
)

которое можно записать в виде

.

Заменой
оно приводится к линейному уравнению:

,
,
.

Уравнения Бернулли также решаются изложенными выше методами.

Пример 3 . Найти общее решения уравнения
.

 Цепочка преобразований:
,
,,
,
,
,
,
,
,
,
,
,
,
,

Готовые ответы к примерам на однородные дифференциальные уравнения первого порядка ищут многие студенты (ДУ 1 порядка самые распространенные в обучении), далее Вы их сможете подробно разобрать. Но прежде чем перейти к рассмотрению примеров рекомендуем внимательно прочитать краткий теоретический материал.
Уравнения вида P(x,y)dx+Q(x,y)dy=0, где функции P(x,y) і Q(x,y) являются однородными функциями одного порядка называют однородным дифференциальным уравнением (ОДР).

Схема решения однородного дифференциального уравнения

1. Сначала нужно применить подстановку y=z*x , где z=z(x) – новая неизвестная функция (таким образом исходное уравнение сводится к дифференциальному уравнению с разделяющимися переменными.
2. Производная произведения равна y"=(z*x)"=z"*x+z*x"=z"*x+z или в дифференциалах dy=d(zx)=z*dx+x*dz.
3. Далее подставляем новую функцию у и ее производную y" (или dy ) в ДУ с разделяющимися переменными относительно x та z .
4. Решив дифференциальное уравнение с разделяющимися переменными, сделаем обратную замену y=z*x , поэтому z= y/х , и получим общее решение (общий интеграл) дифференциального уравнения .
5. Если задано начальное условие y(x 0)=y 0 , то находим частное решение задачи Коши. В теории все звучит легко, однако на практике не у всех так весело получается решать дифференциальные уравнения. Поэтому для углубления знаний рассмотрим распространенные примеры. На легких задачах нет особо Вас научить, поэтому сразу перейдем к более сложным.

Вычисления однородных дифференциальных уравнений первого порядка

Пример 1.

Решение: Делим правую сторону уравнения на переменную, которая стоит множителем возле производной. В результате придем к однородного дифференциального уравнения 0 порядка

И здесь многим пожалуй стало интересно, как определить порядок функции однородного уравнения?
Вопрос достаточно уместен, а ответ на него следующий:
в правую сторону подставляем вместо функции и аргумента значение t*x, t*y . При упрощении получают параметр "t" в определенном степени k , его и называют порядком уравнения. В нашем случае "t" сократится, что равносильно 0-м степени или нулевом порядке однородного уравнения.
Далее в правой стороне можем перейти к новой переменной y=zx; z=y/x .
При этом не забываем выразить производную "y" через производную новой переменной. По правилу части находим

Уравнения в дифференциалах примет вид

Совместные слагаемые в правой и левой части сокращаем и переходим к дифференциальному уравнению с разделенными переменными.

Проинтегрируем обе части ДУ

Для удобства дальнейших преобразований постоянную сразу вносим под логарифм

По свойствам логарифмов полученное логарифмическое уравнение эквивалентно следующему

Эта запись еще не решение (ответ), необходимо вернуться к выполненной замене переменных

Таким образом находят общее решение дифференциальных уравнений . Если Вы внимательно читали предыдущие уроки, то мы говорили, что схему вычисления уравнений с разделенными переменными Вы должны уметь применять свободно и такого рода уравнения придется вычислять для более сложных типов ДУ.

Пример 2. Найти интеграл дифференциального уравнения

Решение: Схема вычислений однородных и сводных к ним ДУ Вам тепер знакома. Переносим переменную в правую сторону уравнения, а также в числителе и знаменателе выносим x 2 , как общий множитель

Таким образом получим однородное ДУ нулевого порядка.
Следующим шагом вводим замену переменных z=y/x, y=z*x , о которой постоянно будем напоминать, чтобы Вы ее заучили

После этого ДУ записываем в дифференциалах

Далее преобразуем зависимость к дифференциальному уравнению с отделенными переменными

и интегрированием решаем его.

Интегралы несложные, остальные преобразования выполнены на основе свойств логарифма. Последнее действие включает экспонирования логарифма. Наконец возвращаемся к исходной замене и записываем в форме

Константа "C" принимает любое значение. Все кто учится заочно имеют проблемы на экзаменах с данным типом уравнений, поэтому просьба внимательно посмотреть и запомнить схему вычислений.

Пример 3. Решить дифференциальное уравнение

Решение: Как следует из приведенной выше методики, дифференциальные уравнения такого типа решают методом введения новой переменной. Перепишем зависимость так, чтобы производная была без переменной

Далее по анализу правой части видим, что везде присутствует частка -ее и обозначаем за новую неизвестную
z=y/x, y=z*x .
Находим производную от y

С учетом замены первоначальное ДУ перепишем в виде

Одинаковые слагаемые упрощаем, а все получившие сводим к ДУ с отделенными переменными

Интегрированием обеих частей равенства

приходим к решению в виде логарифмов

Экспонируя зависимости находим общее решение дифференциального уравнения

которое после подстановки в него начальной замены переменных примет вид

Здесь С - постоянная, которую можно доопределить из условия Коши. Если не задана задача Коши то стала принимает произвольное действительное значение.
Вот и вся мудрость в исчислении однородных дифференциальных уравнений.

В этой статье мы рассмотрим способ решения однородных тригонометрических уравнений.

Однородные тригонометрические уравнения имеют ту же структуру, что и однородные уравнения любого другого вида. Напомню способ решения однородных уравнений второй степени:

Рассмотрим однородные уравнения вида

Отличительные признаки однородных уравнений:

а) все одночлены имеют одинаковую степень,

б) свободный член равен нулю,

в) в уравнении присутствуют степени с двумя различными основаниями.

Однородные уравнения решаются по сходному алгоритму.

Чтобы решить уравнение такого типа, разделим обе части уравнения на (можно разделить на или на )

Внимание! При делении правой и левой части уравнения на выражение, содержащее неизвестное, можно потерять корни. Поэтому необходимо проверить, не являются ли корни того выражения, на которое мы делим обе части уравнения, корнями исходного уравнения.

Если является, то мы выписываем этот корень, чтобы потом про него не забыть, а затем делим на это выражение.

Вообще, первым делом, при решении любого уравнения, в правой части которого стоит ноль, нужно попытаться разложить левую часть уравнения на множители любым доступным способом. А затем каждый множитель приравнять к нулю. В этом случае мы точно не потеряем корни.

Итак, осторожно разделим левую часть уравнения на выражение почленно. Получим:

Сократим числитель и знаменатель второй и третьей дроби:

Введем замену:

Получим квадратное уравнение:

Решим квадратное уравнение, найдем значения , а затем вернемся к исходному неизвестному.

При решении однородных тригонометрических уравнений, нужно помнить несколько важных вещей:

1. Свободный член можно преобразовать к квадрату синуса и косинуса с помощью основного тригонометрического тождества:

2. Синус и косинус двойного аргумента являются одночленами второй степени - синус двойного аргумента легко преобразовать к произведению синуса и косинуса, а косинус двойного аргумента - к квадрату синуса или косинуса:

Рассмотрим несколько примеров решения однородных тригонометрических уравнений.

1 . Решим уравнение:

Это классический пример однородного тригонометрического уравнения первой степени: степень каждого одночлена равна единице, свободный член равен нулю.

Прежде чем делить обе части уравнения на , необходимо проверить, что корни уравнения не являются корнями исходного уравнения. Проверяем: если , то title="sin{x}0">, следовательно их сумма не равна нулю.

Разделим обе части уравнения на .

Получим:

, где

, где

Ответ: , где

2 . Решим уравнение:

Это пример однородного тригонометрического уравнения второй степени. Мы помним, что если мы можем разложить левую часть уравнения на множители, то желательно это сделать. В этом уравнении мы можем вынести за скобки . Сделаем это:

Решение первого уравнения: , где

Второе уравнение - однородное тригонометрическое уравнение первой степени. Чтобы его решить, разделим обе части уравнения на . Получим:

Ответ: , где ,

3 . Решим уравнение:

Чтобы это уравнение "стало" однородным, преобразуем в произведение, и представим число 3 в виде суммы квадратов синуса и косинуса:

Перенесем все слагаемые влево, раскроем скобки и приведем подобные члены. Получим:

Разложим левую часть на множители и приравняем каждый множитель к нулю:

Ответ: , где ,

4 . Решим уравнение:

Мы видим, что можем вынести за скобки . Сделаем это:

Приравняем каждый множитель к нулю:

Решение первого уравнения:

Второе уравнение совокупности представляет собой классическое однородное уравнение второй степени. Корни уравнения не являются корнями исходного уравнения, поэтому разделим обе части уравнения на :

Решение первого уравнения:

Решение второго уравнения.

Думаю, нам стоит начать с истории такого славного математического инструмента как дифференциальные уравнения. Как и все дифференциальные и интегральные исчисления, эти уравнения были изобретены Ньютоном в конце 17-го века. Он считал именно это своё открытие настолько важным, что даже зашифровал послание, которое сегодня можно перевести примерно так: "Все законы природы описываются дифференциальными уравнениями". Это может показаться преувеличением, но всё так и есть. Любой закон физики, химии, биологии можно описать этими уравнениями.

Огромный вклад в развитие и создание теории дифференциальных уравнений внесли математики Эйлер и Лагранж. Уже в 18-м веке они открыли и развили то, что сейчас изучают на старших курсах университетов.

Новая веха в изучении дифференциальных уравнений началась благодаря Анри Пуанкаре. Он создал «качественную теорию дифференциальных уравнений», которая в сочетании с теорией функций комплексного переменного внесла значительный вклад в основание топологии - науки о пространстве и его свойствах.

Что такое дифференциальные уравнения?

Многие боятся одного словосочетания Однако в этой статье мы подробно изложим всю суть этого очень полезного математического аппарата, который на самом деле не так сложен, как кажется из названия. Для того чтобы начать рассказывать про дифференциальные уравнения первого порядка, следует сначала познакомиться с основными понятиями, которые неотъемлемо связаны с этим определением. И начнём мы с дифференциала.

Дифференциал

Многие знают это понятие ещё со школы. Однако всё же остановимся на нём поподробнее. Представьте себе график функции. Мы можем увеличить его до такой степени, что любой его отрезок примет вид прямой линии. На ней возьмём две точки, находящиеся бесконечно близко друг к другу. Разность их координат (x или y) будет бесконечно малой величиной. Ее и называют дифференциалом и обозначают знаками dy (дифференциал от y) и dx (дифференциал от x). Очень важно понимать, что дифференциал не является конечной величиной, и в этом заключается его смысл и основная функция.

А теперь необходимо рассмотреть следующий элемент, который нам пригодится при объяснении понятия дифференциального уравнения. Это - производная.

Производная

Все мы наверняка слышали в школе и это понятие. Говорят, что производная - это скорость роста или убывания функции. Однако из этого определения многое становится непонятным. Попробуем объяснить производную через дифференциалы. Давайте вернёмся к бесконечно малому отрезку функции с двумя точками, которые находятся на минимальном расстоянии друг от друга. Но даже за это расстояние функция успевает измениться на какую-то величину. И чтобы описать это изменение и придумали производную, которую иначе можно записать как отношение дифференциалов: f(x)"=df/dx.

Теперь стоит рассмотреть основные свойства производной. Их всего три:

  1. Производную суммы или разности можно представить как сумму или разность производных: (a+b)"=a"+b" и (a-b)"=a"-b".
  2. Второе свойство связано с умножением. Производная произведения - это сумма произведений одной функции на производную другой: (a*b)"=a"*b+a*b".
  3. Производную разности записать можно в виде следующего равенства: (a/b)"=(a"*b-a*b")/b 2 .

Все эти свойства нам пригодятся для нахождения решений дифференциальных уравнений первого порядка.

Также бывают частные производные. Допустим, у нас есть функция z, которая зависит от переменных x и y. Чтобы вычислить частную производную этой функции, скажем, по x, нам необходимо принять переменную y за постоянную и просто продифференцировать.

Интеграл

Другое важное понятие - интеграл. По сути это прямая противоположность производной. Интегралы бывают нескольких видов, но для решения простейших дифференциальных уравнений нам понадобятся самые тривиальные

Итак, Допустим, у нас есть некоторая зависимость f от x. Мы возьмём от неё интеграл и получим функцию F(x) (часто её называют первообразной), производная от которой равна первоначальной функции. Таким образом F(x)"=f(x). Отсюда следует также, что интеграл от производной равен первоначальной функции.

При решении дифференциальных уравнений очень важно понимать смысл и функцию интеграла, так как придётся очень часто их брать для нахождения решения.

Уравнения бывают разными в зависимости от своей природы. В следующем разделе мы рассмотрим виды дифференциальных уравнений первого порядка, а потом и научимся их решать.

Классы дифференциальных уравнений

"Диффуры" делятся по порядку производных, участвующих в них. Таким образом бывает первый, второй, третий и более порядок. Их также можно поделить на несколько классов: обыкновенные и в частных производных.

В этой статье мы рассмотрим обыкновенные дифференциальные уравнения первого порядка. Примеры и способы их решения мы также обсудим в следующих разделах. Будем рассматривать только ОДУ, потому что это самые распространённые виды уравнений. Обыкновенные делятся на подвиды: с разделяющимися переменными, однородные и неоднородные. Далее вы узнаете, чем они отличаются друг от друга, и научитесь их решать.

Кроме того, эти уравнения можно объединять, чтобы после у нас получилась система дифференциальных уравнений первого порядка. Такие системы мы тоже рассмотрим и научимся решать.

Почему мы рассматриваем только первый порядок? Потому что нужно начинать с простого, а описать всё, связанное с дифференциальными уравнениями, в одной статье просто невозможно.

Уравнения с разделяющимися переменными

Это, пожалуй, самые простые дифференциальные уравнения первого порядка. К ним относятся примеры, которые можно записать так: y"=f(x)*f(y). Для решения этого уравнения нам понадобится формула представления производной как отношения дифференциалов: y"=dy/dx. С помощью неё получаем такое уравнение: dy/dx=f(x)*f(y). Теперь мы можем обратиться к методу решения стандартных примеров: разделим переменные по частям, т. е. перенесём всё с переменной y в часть, где находится dy, и так же сделаем с переменной x. Получим уравнение вида: dy/f(y)=f(x)dx, которое решается взятием интегралов от обеих частей. Не стоит забывать и о константе, которую нужно ставить после взятия интеграла.

Решение любого "диффура" - это функция зависимости x от y (в нашем случае) или, если присутствует численное условие, то ответ в виде числа. Разберём на конкретном примере весь ход решения:

Переносим переменные в разные стороны:

Теперь берём интегралы. Все их можно найти в специальной таблице интегралов. И получаем:

ln(y) = -2*cos(x) + C

Если требуется, мы можем выразить "игрек" как функцию от "икс". Теперь можно сказать, что наше дифференциальное уравнение решено, если не задано условие. Может быть задано условие, например, y(п/2)=e. Тогда мы просто подставляем значение этих переменных в решение и находим значение постоянной. В нашем примере оно равно 1.

Однородные дифференциальные уравнения первого порядка

Теперь переходим к более сложной части. Однородные дифференциальные уравнения первого порядка можно записать в общем виде так: y"=z(x,y). Следует заметить, что правая функция от двух переменных однородна, и её нельзя разделить на две зависимости: z от x и z от y. Проверить, является ли уравнение однородным или нет, достаточно просто: мы делаем замену x=k*x и y=k*y. Теперь сокращаем все k. Если все эти буквы сократились, значит уравнение однородное и можно смело приступать к его решению. Забегая вперёд, скажем: принцип решения этих примеров тоже очень прост.

Нам нужно сделать замену: y=t(x)*x, где t - некая функция, которая тоже зависит от x. Тогда мы можем выразить производную: y"=t"(x)*x+t. Подставляя всё это в наше исходное уравнение и упрощая его, мы получаем пример с разделяющимися переменными t и x. Решаем его и получаем зависимость t(x). Когда мы ее получили, то просто подставляем в нашу предыдущую замену y=t(x)*x. Тогда получаем зависимость y от x.

Чтобы было понятнее, разберём пример: x*y"=y-x*e y/x .

При проверке с заменой всё сокращается. Значит, уравнение действительно однородное. Теперь делаем другую замену, о которой мы говорили: y=t(x)*x и y"=t"(x)*x+t(x). После упрощения получаем следующее уравнение: t"(x)*x=-e t . Решаем получившийся пример с разделёнными переменными и получаем: e -t =ln(C*x). Нам осталось только заменить t на y/x (ведь если y=t*x, то t=y/x), и мы получаем ответ: e -y/x =ln(x*С).

Линейные дифференциальные уравнения первого порядка

Пришло время рассмотреть ещё одну обширную тему. Мы разберём неоднородные дифференциальные уравнения первого порядка. Чем они отличаются от предыдущих двух? Давайте разберёмся. Линейные дифференциальные уравнения первого порядка в общем виде можно записать таким равенством: y" + g(x)*y=z(x). Стоит уточнить, что z(x) и g(x) могут являться постоянными величинами.

А теперь пример: y" - y*x=x 2 .

Существует два способа решения, и мы по порядку разберём оба. Первый - метод вариации произвольных констант.

Для того чтобы решить уравнение этим способом, необходимо сначала приравнять правую часть к нулю и решить получившееся уравнение, которое после переноса частей примет вид:

ln|y|=x 2 /2 + C;

y=e x2/2 *у С =C 1 *e x2/2 .

Теперь надо заменить константу C 1 на функцию v(x), которую нам предстоит найти.

Проведём замену производной:

y"=v"*e x2/2 -x*v*e x2/2 .

И подставим эти выражения в исходное уравнение:

v"*e x2/2 - x*v*e x2/2 + x*v*e x2/2 = x 2 .

Можно видеть, что в левой части сокращаются два слагаемых. Если в каком-то примере этого не произошло, значит вы что-то сделали не так. Продолжим:

v"*e x2/2 = x 2 .

Теперь решаем обычное уравнение, в котором нужно разделить переменные:

dv/dx=x 2 /e x2/2 ;

dv = x 2 *e - x2/2 dx.

Чтобы извлечь интеграл, нам придётся применить здесь интегрирование по частям. Однако это не тема нашей статьи. Если вам интересно, вы можете самостоятельно научиться выполнять такие действия. Это не сложно, и при достаточном навыке и внимательности не отнимает много времени.

Обратимся ко второму способу решения неоднородных уравнений: методу Бернулли. Какой подход быстрее и проще - решать только вам.

Итак, при решении уравнения этим методом нам необходимо сделать замену: y=k*n. Здесь k и n - некоторые зависящие от x функции. Тогда производная будет выглядеть так: y"=k"*n+k*n". Подставляем обе замены в уравнение:

k"*n+k*n"+x*k*n=x 2 .

Группируем:

k"*n+k*(n"+x*n)=x 2 .

Теперь надо приравнять к нулю то, что находится в скобках. Теперь, если объединить два получившихся уравнения, получается система дифференциальных уравнений первого порядка, которую нужно решить:

Первое равенство решаем, как обычное уравнение. Для этого нужно разделить переменные:

Берём интеграл и получаем: ln(n)=x 2 /2. Тогда, если выразить n:

Теперь подставляем получившееся равенство во второе уравнение системы:

k"*e x2/2 =x 2 .

И преобразовывая, получаем то же самое равенство, что и в первом методе:

dk=x 2 /e x2/2 .

Мы также не будем разбирать дальнейшие действия. Стоит сказать, что поначалу решение дифференциальных уравнений первого порядка вызывает существенные трудности. Однако при более глубоком погружении в тему это начинает получаться всё лучше и лучше.

Где используются дифференциальные уравнения?

Очень активно дифференциальные уравнения применяются в физике, так как почти все основные законы записываются в дифференциальной форме, а те формулы, которые мы видим - решение этих уравнений. В химии они используются по той же причине: основные законы выводятся с их помощью. В биологии дифференциальные уравнения используются для моделирования поведения систем, например хищник - жертва. Они также могут использоваться для создания моделей размножения, скажем, колонии микроорганизмов.

Как дифференциальные уравнения помогут в жизни?

Ответ на этот вопрос прост: никак. Если вы не учёный или инженер, то вряд ли они вам пригодятся. Однако для общего развития не помешает знать, что такое дифференциальное уравнение и как оно решается. И тогда вопрос сына или дочки "что такое дифференциальное уравнение?" не поставит вас в тупик. Ну а если вы учёный или инженер, то и сами понимаете важность этой темы в любой науке. Но самое главное, что теперь на вопрос "как решить дифференциальное уравнение первого порядка?" вы всегда сможете дать ответ. Согласитесь, всегда приятно, когда понимаешь то, в чём люди даже боятся разобраться.

Основные проблемы при изучении

Основной проблемой в понимании этой темы является плохой навык интегрирования и дифференцирования функций. Если вы плохо берёте производные и интегралы, то, наверное, стоит ещё поучиться, освоить разные методы интегрирования и дифференцирования, и только потом приступать к изучению того материала, что был описан в статье.

Некоторые люди удивляются, когда узнают, что dx можно переносить, ведь ранее (в школе) утверждалось, что дробь dy/dx неделима. Тут нужно почитать литературу по производной и понять, что она является отношением бесконечно малых величин, которыми можно манипулировать при решении уравнений.

Многие не сразу осознают, что решение дифференциальных уравнений первого порядка - это зачастую функция или неберущийся интеграл, и это заблуждение доставляет им немало хлопот.

Что ещё можно изучить для лучшего понимания?

Лучше всего начать дальнейшее погружение в мир дифференциального исчисления со специализированных учебников, например, по математическому анализу для студентов нематематических специальностей. Затем можно переходить и к более специализированной литературе.

Стоит сказать, что, кроме дифференциальных, есть ещё интегральные уравнения, так что вам всегда будет к чему стремиться и что изучать.

Заключение

Надеемся, что после прочтения этой статьи у вас появилось представление о том, что такое дифференциальные уравнения и как их правильно решать.

В любом случае математика каким-либо образом пригодится нам в жизни. Она развивает логику и внимание, без которых каждый человек как без рук.

Технология