Большинство связей между аминокислотами в белках водородные. Виды связей аминокислот в белках. Пространственная организация белковой молекулы


Типы связей между аминокислотами в молекуле белка

1. Ковалентные связи - обычные прочные химические связи.

а) пептидная связь

б) дисульфидная связь

2. Нековалентные (слабые) типы связей - физико-химические взаимодействия родственных структур. В десятки раз слабее обычной химической связи. Очень чувствительны к физико-химическим условиям среды. Они неспецифичны, то есть соединяются друг с другом не строго определенные химические группировки, а самые разнообразные химические группы, но отвечающие определенным требованиям.

а) Водородная связь

б) Ионная связь

в) Гидрофобное взаимодействие

ПЕПТИДНАЯ СВЯЗЬ.

Формируется за счет COOH-группы одной аминокислоты и NH 2 -группы соседней аминокислоты. В названии пептида окончания названий всех аминокислот, кроме последней, находящейся на «С»-конце молекулы меняются на «ил»

Тетрапептид: валил-аспарагил-лизил-серин

Пептидная связь формируется только за счет альфа-аминогруппы и соседней cooh-группы общего для всех аминокислот фрагмента молекулы! Если карбоксильные и аминогруппы входят в состав радикала, то они никогда не участвуют в формировании пептидной связи в молекуле белка.

Любой белок - это длинная неразветвленная полипептидная цепь, содержащая десятки, сотни, а иногда более тысячи аминокислотных остатков. Но какой бы длины ни была полипептидная цепь, всегда в основе ее - стержень молекулы, абсолютно одинаковый у всех белков. Каждая полипептидная цепь имеет N-конец, на котором находится свободная концевая аминогруппа и С-конец, образованный концевой свободной карбоксильной группой. На этом стержне сидят как боковые веточки радикалы аминокислот. Числом, соотношением и чередованием этих радикалов один белок отличается от другого. Сама пептидная связь является частично двойной в силу лактим-лактамной таутомерии. Поэтому вокруг нее невозможно вращение, а сама она по прочности в полтора раза превосходит обычную ковалентную связь. На рисунке видно, что из каждых трех ковалентных связей в стержне молекулы пептида или белка две являются простыми и допускают вращение, поэтому стержень (вся полипептидная цепь) может изгибаться в пространстве.

Хотя пептидная связь довольно прочная, ее сравнительно легко можно разрушить химическим путем – кипячением белка в крепком растворе кислоты или щелочи в течении 1-3 суток.

К ковалентным связям в молекуле белка помимо пептидной, относится также дисульфидная связь .

Цистеин - аминокислота, которая в радикале имеет SH-группу, за счет которой и образуются дисульфидные связи.

Дисульфидная связь - это ковалентная связь. Однако биологически она гораздо менее устойчива, чем пептидная связь. Это объясняется тем, что в организме интенсивно протекают окислительно-восстановительные процессы. Дисульфидная связь может возникать между разными участками одной и той же полипептидной цепи, тогда она удерживает эту цепь в изогнутом состоянии. Если дисульфидная связь возникает между двумя полипептидами, то она объединяет их в одну молекулу.

Слабые типы связей

В десятки раз слабее ковалентных связей. Это не определенные типы связей, а неспецифическое взаимодействие, которое возникает между разными химическими группировками, имеющими высокое сродство друг к другу (сродство – это способность к взаимодействию). Например: противоположно заряженные радикалы.

Таким образом, слабые типы связей - это физико-химические взаимодействия. Поэтому они очень чувствительны к изменениям условий среды (температуры, pH среды, ионной силы раствора и так далее).

Водородная связь - это связь, возникающая между двумя электроотрицательными атомами за счет атома водорода, который соединен с одним из электроотрицательных атомов ковалентно (см. рисунок).

Водородная связь примерно в 10 раз слабее, чем ковалентная. Если водородные связи повторяются многократно, то они удерживают полипептидные цепочки с высокой прочностью. Водородные связи очень чувствительны к условиям внешней среды и присутствию в ней веществ, которые сами способны образовывать такие связи (например, мочевина).

Ионная связь - возникает между положительно и отрицательно заряженными группировками (дополнительные карбоксильные и аминогруппы), которые встречаются в радикалах лизина, аргинина, гистидина, аспарагиновой и глутаминовой кислот.

Гидрофобное взаимодействие - неспецифическое притяжение, возникающее в молекуле белка между радикалами гидрофобных аминокислот - вызывается силами Ван-дер-Ваальса и дополняется выталкивающей силой воды. Гидрофобное взаимодействие ослабевает или разрывается в присутствии различных органических растворителей и некоторых детергентов. Например, некоторые последствия действия этилового спирта при проникновении его внутрь организма обусловлены тем, что под его влиянием ослабляются гидрофобные взаимодействия в молекулах белков.

Пространственная организация белковой молекулы

В основе каждого белка лежит полипептидная цепь. Она не просто вытянута в пространстве, а организована в трехмерную структуру. Поэтому существует понятие о 4-х уровнях пространственной организации белка, а именно - первичной, вторичной, третичной и четвертичной структурах белковых молекул.

ПЕРВИЧНАЯ СТРУКТУРА

Первичная структура белка - последовательность аминокислотных фрагментов, прочно (и в течение всего периода существования белка) соединенных пептидными связями. Существует период полужизни белковых молекул - для большинства белков около 2-х недель. Если произошел разрыв хотя бы одной пептидной связи, то образуется уже другой белок.

ВТОРИЧНАЯ СТРУКТУРА

Вторичная структура - это пространственная организация стержня полипептидной цепи. Существуют 3 главнейших типа вторичной структуры:

1) Альфа-спираль - имеет определенные характеристики: ширину, расстояние между двумя витками спирали. Для белков характерна правозакрученная спираль. В этой спирали на 10 витков приходится 36 аминокислотных остатков. У всех пептидов, уложенных в такую спираль, эта спираль абсолютно одинакова. Фиксируется альфа-спираль с помощью водородных связей между NH-группами одного витка спирали и С=О группами соседнего витка. Эти водородные связи расположены параллельно оси спирали и многократно повторяются, поэтому прочно удерживают спиралеобразную структуру. Более того, удерживают в несколько напряженном состоянии (как сжатую пружину).

Бета-складчатая структура - или структура складчатого листа. Фиксируется также водородными связями между С=О и NH-группами. Фиксирует два участка полипептидной цепи. Эти цепи могут быть параллельны или антипараллельны. Если такие связи образуются в пределах одного пептида, то они всегда антипараллельны, а если между разными полипептидами, то параллельны.

3) Нерегулярная структура - тип вторичной структуры, в котором расположение различных участков полипептидной цепи относительно друг друга не имеет регулярного (постоянного) характера, поэтому нерегулярные структуры могут иметь различную конформацию.

ТРЕТИЧНАЯ СТРУКТУРА

Это трехмерная архитектура полипептидной цепи – особое взаимное расположение в пространстве спиралеобразных, складчатых и нерегулярных участков полипептидной цепи. У разных белков третичной структуры различна. В формировании третичной структуры участвуют дисульфидные связи и все слабые типы связей.

Выделяют два общих типа третичной структуры:

1) В фибриллярных белках (например, коллаген, эластин) молекулы которых имеют вытянутую форму и обычно формируют волокнистые структуры тканей, третичная структура представлена либо тройной альфа-спиралью (например, в коллагене), либо бета-складчатыми структурами.

2) В глобулярных белках, молекулы которых имеют форму шара или эллипса (латинское название: GLOBULA - шар), встречается сочетание всех трех типов структур: всегда есть нерегулярные участки, есть бета-складчатые структуры и альфа-спирали.

Обычно в глобулярных белках гидрофобные участки молекулы находятся в глубине молекулы. Соединяясь между собой, гидрофобные радикалы образуют гидрофобные кластеры (центры). Формирование гидрофобного кластера вынуждает молекулу соответствующим образом изгибаться в пространстве. Обычно в молекуле глобулярного белка бывает несколько гидрофобных кластеров в глубине молекулы. Это является проявлением двойственности свойств белковой молекулы: на поверхности молекулы - гидрофильные группировки, поэтому молекула в целом - гидрофильная, а в глубине молекулы - спрятаны гидрофобные радикалы.

ЧЕТВЕРТИЧНАЯ СТРУКТУРА

Встречается не у всех белков, а только у тех, которые состоят из двух или более полипептидных цепей. Каждая такая цепь называется субъединицей данной молекулы (или протомером). Поэтому белки, обладающие четвертичной структурой, называют олигомерными белками. В состав белковой молекулы могут входить одинаковые или разные субъединицы. Например, молекула гемоглобина «А» состоит из двух субъединиц одного типа и двух субъединиц другого типа, то есть является тетрамером. Фиксируются четвертичные структуры белков всеми типами слабых связей, а иногда еще и дисульфидными связями.

КОНФИГУРАЦИЯ И КОНФОРМАЦИЯ БЕЛКОВОЙ МОЛЕКУЛЫ

Из всего сказанного можно заключить, что пространственная организация белков очень сложна. В химии существует понятие - пространственная конфигурация - жестко закрепленное ковалентными связями пространственное взаимное расположение частей молекулы (например: принадлежность к L-ряду стереоизомеров или к D-ряду).

Для белков также используется понятие конформация белковой молекулы - определенное, но не застывшее, не неизменное взаимное расположение частей молекулы. Так как конформация белковой молекулы формируется при участии слабых типов связей, то она является подвижной (способной к изменениям), и белок может изменять свою структуру. В зависимости от условий внешней среды молекула может существовать в разных конформационных состояниях, которые легко переходят друг в друга. Энергетически выгодными для реальных условий являются только одно или несколько конформационных состояний, между которыми существует равновесие. Переходы из одного конформационного состояния в другое обеспечивают функционирование белковой молекулы. Это обратимые конформационные изменения (встречаются в организме, например, при проведении нервного импульса, при переносе кислорода гемоглобином). При изменении конформации часть слабых связей разрушается, и образуются новые связи слабого типа.

ЛИГАНДЫ

Взаимодействие белка с каким-нибудь веществом иногда приводит к связыванию молекулы этого вещества молекулой белка. Этот явление известно как «сорбция» (связывание). Обратный же процесс - освобождение другой молекулы от белковой называется «десорбция».

Если для какой-нибудь пары молекул процесс сорбции преобладает над десорбцией, то это уже специфическая сорбция, а вещество, которое сорбируется, называется «лиганд».

Виды лигандов:

1) Лиганд белка-фермента – субстрат.

2) Лиганд траспортного белка – транспортируемое вещество.

3) Лиганд антитела (иммуноглобулина) – антиген.

4) Лиганд рецептора гормона или нейромедиатора – гормон или нейромедиатор.

Белок может изменять свою конформацию не только при взаимодействии с лигандом, но и в результате любого химического взаимодействия. Примером такого взаимодействия может служить присоединение остатка фосфорной кислоты.

В природных условиях белки имеют несколько термодинамически выгодных конформационных состояний. Это нативные состояния (природные). Natura (лат.) – природа.

НАТИВНОСТЬ БЕЛКОВОЙ МОЛЕКУЛЫ

Нативность - это уникальный комплекс физических, физико-химических, химических и биологических свойств белковой молекулы, который принадлежит ей, когда молекула белка находится в естественном, природном (нативном) состоянии.

Например: белок хрусталика глаза - кристаллин - обладает высокой прозрачностью только в нативном состоянии).

ДЕНАТУРАЦИЯ БЕЛКА

Для обозначения процесса, при котором нативные свойства белка теряются, используют термин денатурация.

Денатурация - это лишение белка его природных, нативных свойств, сопровождающееся разрушением четвертичной (если она была), третичной, а иногда и вторичной структуры белковой молекулы, которое возникает при разрушении дисульфидных и слабых типов связей, участвующих в образовании этих структур. Первичная структура при этом сохраняется, потому что она сформирована прочными ковалентными связями. Разрушение первичной структуры может произойти только в результате гидролиза белковой молекулы длительным кипячением в растворе кислоты или щелочи.

ФАКТОРЫ, ВЫЗЫВАЮЩИЕ ДЕНАТУРАЦИЮ БЕЛКОВ

Факторы, которые вызывают денатурацию белков, можно разделить на физические и химические.

Физические факторы

1. Высокие температуры. Для разных белков характерна различная чувствительность к тепловому воздействию. Часть белков подвергается денатурации уже при 40-50°С. Такие белки называют термолабильными . Другие белки денатурируют при гораздо более высоких температурах, они являются термостабильными .

2. Ультрафиолетовое облучение

3. Рентгеновское и радиоактивное облучение

4. Ультразвук

5. Механическое воздействие (например, вибрация).

Химические факторы

1. Концентрированные кислоты и щелочи. Например, трихлоруксусная кислота (органическая), азотная кислота (неорганическая).

2. Соли тяжелых металлов (например, CuSO 4).

3. Органические растворители (этиловый спирт, ацетон)

4. Растительные алкалоиды.

5. Мочевина в высоких концентрациях


5. Другие вещества, способные нарушать слабые типы связей в молекулах белков.

Воздействие факторами денатурации применяют для стерилизации оборудования и инструментов, а также как антисептики.

Обратимость денатурации

В пробирке (in vitro) чаще всего это – необратимый процесс. Если же денатурированный белок поместить в условия, близкие к нативным, то он может ренатурировать, но очень медленно, и такое явление характерно не для всех белков.

In vivo, в организме, возможна быстрая ренатурация. Это связано с выработкой в живом организме специфических белков, которые «узнают» структуру денатурированного белка, присоединяются к нему с помощью слабых типов связи и создают оптимальные условия для ренатурации. Такие специфические белки известны как «белки теплового шока» или «белки стресса».

Белки стресса

Существует несколько семейств этих белков, они отличаются по молекулярной массе.

Например, известен белок hsp 70 – heatshock protein массой 70 kDa.

Такие белки есть во всех клетках организма. Они выполняют также функцию транспорта полипептидных цепей через биологические мембраны и участвуют в формировании третичной и четвертичной структур белковых молекул. Перечисленные функции белков стресса называются шаперонными. При различных видах стресса происходит индукция синтеза таких белков: при перегреве организма (40-44°С), при вирусных заболеваниях, отравлениях солями тяжелых металлов, этанолом и др.

В организме южных народов установлено повышенное содержание белков стресса, по сравнению с северной расой.

Молекула белка теплового шока состоит из двух компактных глобул, соединенных свободной цепью:

Разные белки теплового шока имеют общий план построения. Все они содержат контактные домены.

Разные белки с различными функциями могут содержать одинаковые домены. Например, различные кальций-связывающие белки имеют одинаковый для всех них домен, отвечающий за связывание Ca +2 .

Роль доменной структуры заключается в том, что она предоставляет белку большие возможности для выполнения своей функции благодаря перемещениям одного домена по отношению к другому. Участки соединения двух доменов – самое слабое в структурном отношении место в молекуле таких белков. Именно здесь чаще всего происходит гидролиз связей, и белок разрушается.



Формируется за счет COOH-группы одной аминокислоты и NH2-группы соседней аминокислоты. В названии пептида окончания названий всех аминокислот, кроме последней, находящейся на «С»-конце молекулы меняются на «ил». Например, тетрапептид: валил-аспарагил-лизил-серин

ПЕПТИДНАЯ СВЯЗЬ формируется ТОЛЬКО ЗА СЧЕТ АЛЬФА-АМИНОГРУППЫ И СОСЕДНЕЙ COOH-ГРУППЫ ОБЩЕГО ДЛЯ ВСЕХ АМИНОКИСЛОТ ФРАГМЕНТА МОЛЕКУЛЫ . Если карбоксильные и аминогруппы входят в состав радикала, то они никогда не участвуют в формировании пептидной связи в молекуле белка.

Сама пептидная связь является частично двойной в силу лактим-лактамной таутомерии. Поэтому вокруг нее невозможно вращение, а сама она по прочности в полтора раза превосходит обычную ковалентную связь. На рисунке видно, что из каждых трех ковалентных связей в стержне молекулы пептида или белка две являются простыми и допускают вращение, поэтому стержень (вся полипептидная цепь) может изгибаться в пространстве.

К ковалентным связям в молекуле белка помимо пептидной, относится также ДИСУЛЬФИДНАЯ СВЯЗЬ.

Дисульфидная связь - это ковалентная связь. Однако биологически она гораздо менее устойчива, чем пептидная связь. Это объясняется тем, что в организме интенсивно протекают окислительно-восстановительные процессы. Дисульфидная связь может возникать между разными участками одной и той же полипептидной цепи, тогда она удерживает эту цепь в изогнутом состоянии. Если дисульфидная связь возникает между двумя полипептидами, то она объединяет их в одну молекулу.

СЛАБЫЕ ТИПЫ СВЯЗЕЙ

В десятки раз слабее ковалентных связей. Слабые типы связей - это физико-химические взаимодействия. Поэтому они очень чувствительны к изменениям условий среды (температуры, pH среды, ионной силы раствора и так далее).

ВОДОРОДНАЯ СВЯЗЬ - это связь, возникающая между двумя электроотрицательными атомами за счет атома водорода, который соединен с одним из электроотрицательных атомов ковалентно (см. рисунок).

Водородная связь примерно в 10 раз слабее, чем ковалентная. Если водородные связи повторяются многократно, то они удерживают полипептидные цепочки с высокой прочностью. Водородные связи очень чувствительны к условиям внешней среды и присутствию в ней веществ, которые сами способны образовывать такие связи (например, мочевина).

ИОННАЯ СВЯЗЬ - возникает между положительно и отрицательно заряженными группировками (дополнительные карбоксильные и аминогруппы), которые встречаются в радикалах лизина, аргинина, гистидина, аспарагиновой и глутаминовой кислот.

ГИДРОФОБНОЕ ВЗАИМОДЕЙСТВИЕ - неспецифическое притяжение, возникающее в молекуле белка между радикалами гидрофобных аминокислот - вызывается силами Ван-дер-Ваальса и дополняется выталкивающей силой воды.

Номенклатура пептидов

Пептидная цепь имеет одно направление и два разных конца - N-конец , несущий свободную аминогруппу первой аминокислоты, и С-конец , несущий карбоксильную группу последней аминокислоты. Напомним, что в белках и пептидах аминокислотные остатки связаны в цепочку последовательно. Для того чтобы назвать конкретный пептид, достаточно перечислить (начиная с N-конца) последовательность входящих в его состав аминокислотных остатков в трехбуквенном или однобуквенном коде. Например, аминокислотная последовательность пептидного гормона ангиотензина Il читается следующим образом: Asp-Аrg-Vаl-Туr-Ile-His-Pro-Phe.

При названии пептидов к сокращенному названию аминокислоты добавляют суффикс –ил, за исключением последней С-концевой аминокислоты. Например, тетрапептид Сер-Гли-Про-Ала читается как срилглицилпрлилаланин.

Цепь повторяющихся групп -NH-CH-CO- называется пептидным остовом. Какой бы длины ни была бы полипептидная цепь, всегда в основе ее - стержень молекулы, абсолютно одинаковый у всех белков. На этом стержне сидят как боковые веточки радикалы аминокислот. Числом, соотношением и чередованием этих радикалов один белок отличается от другого. Мономеры аминокислот, входящие в состав пептидов и белков, называются аминокислотными остатками.

Общая характеристика пептидов.

Пептид состоит из 2 и более аминокислотных остатков, связанных пептидными связями. Пептиды, содержащие менее чем 10 аминокислотных остатков, называются олигопептидами. Пептиды, содержащие более чем 10 аминокислотных остатков, называются полипептидами. Столько же аминокислот могут содержать и некоторые небольшие белки. Условная граница между полипептидами и белками лежит в области молекулярной массы 6000.

Полипептиды млекопитающих содержат пептидные связи, образованные между альфа-аминогруппой и альфа карбоксильной группой протеиногенных аминокислот. Однако в состав некоторых полипептидов могут входить и другие аминокислоты или производные протеиногенных аминокислот. Атипичным пептидом является трипептид глутатион (гамма-глутамилцистеинилглицин), в котором N- концевой глутамат и цистеин не связаны альфа-пептидной связью.

Биологическая роль пептидов.

1. Пептидами являются многие важнейшие гормоны человека, например, глюкагон, окситоцин, вазопрессин.

2. Пептиды, регулирующие процессы пищеварения, например, гастрин, холецистокинин.

3. Пептиды, регулирующие тонус сосудов и артериальное давление, например, ангиотензин II, брадикинин.

4. Пептиды, регулирующие аппетит, например, лептин, b -эндорфины.

5. Пептиды, обладающие обезболивающим действием, например, опиоидные пептиды (энкефалины и эндорфины).

6. Пептиды, участвующие в регуляции высшей нервной деятельности, в биохимических процессах, связанных с механизмами сна, памяти, обучения и т.д.

7. Трипептид глутатион выполняет функцию защиты клетки от окислительных повреждений свободными радикалами.

Медицинское значение.

Пептиды используются в качестве лекарственных препаратов, например, пептидами являются некоторые антибиотики, противоопухолевые препараты.

В процессе распада эндогенных белков образуются среднемолекулярные пептиды (СМП). Основная частьСМП представлена полипептидами с молекулярной массой 300-5000 Д. СМП обладают разнообразной биологической активностью. В физиологических условиях 95% среднемолекулярных пептидов удаляются главным образом путем гломерулярной фильтрации.

Ослабление экскреторной функции почек и неполный распад белков (протеолиз) приводят к увеличению концентрации СМП в плазме (сыворотке) крови. Причем концентрация средних молекул в сыворотке больного может в 8-10 раз превышать норму.

Накопление СМП приводит к нарушению микроциркуляции, а также транспорта ионов натрия и калия через мембраны, подавлению иммунного ответа организма, угнетению активности ряда ферментов. В клинической практике СМП определяют как критерий интоксикации.









Ионная связь аминокислот. Дисульфидная связь аминокислот. Водородная связь аминокислот.

При определенных значениях рН кислотные и основные R-группы ионизованы, т. е. несут заряд, кислотные - отрицательный, а основные - положительный. Благодаря этому они могут взаимодействовать друг с другом, в результате чего возникает ионная связь.

В водной среде ионные связи значительно слабее ковалентных и могут разрываться при изменении рН среды. Это объясняет, почему при изменении рН может разрушаться структура белка .

Если, например, к молоку добавить кислоту, то молоко свернется: казеин (белок молока) из-за разрыва ионных связей станет нерастворимым.

Дисульфидная связь аминокислот

Молекула аминокислоты цистеина содержит сульфгидрильную (-SH) группу. Когда соединяются две молекулы цистеина, их сульфгидрильные группы, оказавшись по соседству, окисляются и образуют дисульфидную связь .

Дисульфидные связи могут возникать как между разными полипептидными цепями (в молекуле инсулина), так и между различными участками одной и той же полипептидной цепи . В последнем случае именно они вынуждают молекулу определенным образом свертываться, т. е. приобретать свойственную ей форму.

Дисульфидные связи достаточно прочны и разрываются нелегко.


Водородная связь аминокислот

О водородной связи мы уже говорили выше при обсуждении свойств воды. Когда водород входит в состав ОН- или NH-группы, он несет небольшой положительный заряд.

Объясняется это тем, что обобщенные электроны, заряженные отрицательно, притягиваются атомами О или N сильнее, чем водорода . Водород будет поэтому притягиваться оказавшимися с ним по соседству атомами кислорода С=0-групп или атомами азота NH-групп. С=0- и NH-группы регулярно чередуются вдоль полипептидной цепи, поэтому такие взаимодействия ведут к появлению структур, подобных а-спирали, о которой мы будем говорить ниже.

Водородные связи слабы, но они возникают очень часто, так что общий их вклад в стабильность молекулярной структуры, например в структуру альфа-спирали или белка шелка, весьма значителен.

Аминокислоты, соединяясь друг с другом пептидной связью , образуют длинные неразветвленные цепи-полипептиды. Пептидная связь возникает при взаимодействии карбоксильной группы одной аминокислоты и аминогруппы другой аминокислоты с выделением воды:

Пептидные связи образуются только за счет взаимодействия амино- и карбоксильных групп, обязательно входящих в общую часть белковой молекулы.В состав полипептидов входят десятки, сотни и тысячи остатков аминокислот.У каждого полипептида аминокислотные остатки располагаются в строгой последовательности, закодированной в молекулах ДНК.

Кроме пептидных, в белках обнаруживаются еще дисульфидные связи, которые также являются ковалентными.В образовании таких связей участвует только аминокислота цистеин .В радикале цистеина содержится SH-группа,за счет которой молекулы цистеина могут соединяться друг с другом:

Дисульфидная связь возникает между двумя атомами серы, с помощью которых происходит соединение двух остатков молекул цистеина.

В молекулах белков дисульфидная связь возникает между остатками цистеина, входящими в состав полипептидов.

Дисульфидной связью могут также соединиться остатки цистеина,находящиеся в разных полипептидах,но пространственно сближенные.

Наряду с ковалентными связями в молекулах белков могут встречаться и слабые нековалентные связи, к которым относятся водородные, ионные и другие связи.Эти химические связи могут возникать между остатками аминокислот, расположенными в разных участках одного и того же полипептида и пространственно сближенными. В итоге молекула белка является объемным, трехмерным образованием, имеющим определенную пространственную форму.



Первичная струткура. Представляет собой последовательность расположения аминокислот в полипептидных цепях.Фиксируется прочными пептидными связями.

Вторичная структура. Описывает пространственную форму полипетидных цепей.Фиксируется дисульфидными и различными нековалентными связями.

Третичная структура. Отражает пространственную форму вторично структуры.Стабилизируется слабыми нековалентными, а также дисульфидными связями и поэтому является самой неустойчивой структурой.

Четвертичная структура. Обладают только некоторые белки.Сложное надмолекулярное образование, состоящее из нескольких белков, имеющих свою собственную первичную, вторичную и третичную структуры.Каждый белок, входящий в состав четвертичной структуры, называется субъединицей.Ассоциация субъединиц в четвертичную структуру приводит к возникновению нового биологического свойства, отсутствующего у свободных субъединиц.Объединяются субъединицы в четвертичную структуру за счет слабых нековалентных связей, поэтому четвертичная структура неустойчива и легко диссоциирует на субъединицы.

4. Амфотерность белков.

Амфотерность белков (наличие у молекул как кислотных, так и щелочных свойств) обусловлена присутствием в их молекулах свободных карбоксильных групп (кислотные группы) и аминогрупп (оснόвные группы). В кислой среде (рН < 7) вследствие избытка ионов водорода (протонов) диссоциация карбоксильных групп подавлена. Свободные аминогруппы легко присоединяют к себе имеющиеся в избытке протоны и переходят в протонированную форму:


Следовательно Белки в кислой среде проявляют оснóвные (щелочные) и находятся в катионной форме (их молекулы заряжены положительно).


В щелочной среде (рН > 7) преобладают ионы гидроксила (ОН-), ионов водорода мало. В этих условиях легко протекает диссоциация карбоксильных групп, протонирование аминогрупп практически не происходит:


Поэтому в щелочной среде белки обладают кислотными свойствами и находятся в анионной форме (их молекулы заряжены отрицательно).


Однако при определенной кислотности в молекуле белка может быть одинаковое количество диссоциированных карбоксильных групп (-СОО-) и протонированных аминогрупп (-NH3+). Такая белковая молекула не имеет заряда и является нейтральной.

Значение рН, при котором молекулы белка нейтральны, называется изоэлектрической точкой белка и обозначается рI или рНиэт.. Значение рI зависит от соотношения в молекуле белка между аминокислотами, содержащими в радикале карбоксильную группу (моноаминодикарбоновые кислоты), и аминокислотами, содержащими в радикале аминогруппу (диаминомонокарбоновые кислоты). Если в белке с дополнительной карбоксильной группой, то значение изоэлектрической точки находится в кислой среде (рI < 7). В случае преобладания аминокислот со свободными аминогруппами изоэлектрическая точка имеет величину больше 7, т.е. находится в щелочной среде. По значению рI можно установить заряд белка, находящегося в растворе с известным рН. Если рН раствора больше величины изоэлектрической точки, молекулы белка имеют отрицательный заряд.

Следовательно, при повышении или снижении кислотности изменяется заряд белковых молекул, что сказывается на свойствах белка и, в том числе, на его функциональной активности.

5. Растворимость белков.

Белки хорошо растворяются в воде и их растворы близки по свойствам к коллоидным растворам.

Высокая стабильность белковых растворов обеспечивается факторами устойчивости. Один из них – это наличие у белковых молекул заряда.

При одном строго определенном значении рН, равном изоэлектрической точке, белок нейтрален, при всех остальных значениях рН белковые молекулы имеют какой-то заряд. Благодаря наличию заряду при столкновениях молекулы белка отталкиваются друг от друга, и их объединения в более крупные частицы не происходит.

Второй фактор устойчивости белковых растворов заключается в наличие у белковых молекул гидратной (водной) оболочки. Образование гидратной оболочки обусловлено тем, что различные неполярные (гидрофобные) группировки обычно располагаются внутри белковой молекулы, а полярные (гидрофильные) группы (-СООН, -NН2 , -OH, -SH, пептидные связи -СО-NH-) находятся на поверхности белковой молекулы. К этим полярным группам присоединяются молекулы вода, вследствие чего молекула белка окружается слоем из ориентированных молекул воды.

6. Высаливание и денатурация белка.

Высаливание – это выпадение белка в осадок под действием водоотнимающих средств, к которым, в первую, очередь, относятся соли (Na2SO4, (NH4)2SO4 и др.). Ионы солей, подобно белкам, также хорошо связывают воду. При высоких концентрациях вследствие низкой молекулярной массы солей количество их ионов огромно по сравнению с макромолекулами белков. В результате бóльшая часть воды связывается с ионами солей, что приводит значительному уменьшению гидратных оболочек у белков, снижению их растворимости и выпадением в осадок.

Наиболее эффективно высаливание при рН, равном изоэлектрической точке осаждаемого белка. В этом случае белок не только теряет гидратную оболочку, но и лишается заряда, что приводит к его полному осаждению.

Высаливание – процесс обратимый. При удалении водоотнимающего средства или при добавлении воды осадок белка растворяется и образуется полноценный раствор белка.

Денатурация белков - изменение нативной конформации белковой молекулы под действием различных дестабилизирующих факторов. Денатурация бывает обратимой и не обратимой.

Денатурация, как правило, сопровождается выпадением белка в осадок. Денатурация вызывается физическими и химическими факторами. Физическими факторами являются: нагревание (выше 50-60°С), различные виды излучения (ультрафиолетовое и ионизирующее излучение), ультразвук, вибрация. К химическим факторам относятся: сильные кислоты и щелочи, соли тяжелых металлов, некоторые органические кислоты (трихлоруксусная и сульфосалициловая). Под влиянием перечисленных факторов в молекулах белков разрываются различные непептидные связи, что вызывает разрушение высших (кроме первичной) структур и переход белковых молекул в новую пространственную форму. Такое изменение конформации приводит к утрате белками их биологической активности.

Ренатурация - процесс, обратный денатурации, при котором белки возвращают свою природную структуру.

7. Классификация белков

  • По хим.составу: простые(протеины)-аминокислоты, альбумины, глобулины,гистоны и т.д

Сложные(протеиды)- хромопротеины, нуклеопротеиды.

  • По строению простетической группы: фосопротеиды(в качестве просетич.группы фосфорная кислота

Нуклеопротеиды(содержат нуклеиновую кислоту)

Гликпротеиды(сод.углевод)

Липопротеиды(сод липид)

  • По пространственной ориентации: глобулярные(в форме шара)-альбумины и глобулины плазмы крови

Фибриллярные(молекулы вытянуты)-коллаген

8. Строение ферментов. Стадии ферментативного катализа

Фермент-особые белки,катализирующие хим.реакции. «Активный центр»-участок молекулы фермента,где происходит катализ. Он образуется на на уровне третичной стркутур белка. В нём 2 участка- абсорбцинный-соответствует структуре реагирующих соединений(поэтому более легко присоединяются субстраты) и каталитический-непосредственно осуществляет ферментативную реакцию

1- Присоединение субстрата к абсобирующему участку активного центра за счёт слабых связей-образуется неустойчивый субстрат-фермент комплекс

2- С участием каталитического центра протекают различные реакции с высокой скоростью

3- Отделение продукта от активного центра продукта реакции

9. Специфичность ферментов

Два вида специфичности

Специфичность действия-способность фермента катализировать строго определённый тип хим.реакции

Пример:глюкозо-6-фосфат переходит в глюкозу с отщиплением фсфатной группы,толькоо под действием-фосфтазы

Глюкозоо-6-фосфат переходит в глюкзо-1-фосфат только под действием мутазы

Глюкзо-6-фосфат в фруктозо-6-фосфат только под действием изомеразы

Специфичность субстратная-спосбность фермента действовать только на определённые субстраты,т.е фермент катализирует превращение ТОЛЬКО ОДНОГО субстрата

Пример абсолютнй субстратной специфичности: Аргинин-единственный субстрат фермента аргиназы. (Аргиназа отщипляет мочивину от аминокислоты)

Пример относительной субстратной специфичности-фермент пепсин расщипляет пептидные связи в белках любого строения

Субсратная специфич зависит от структуры адсорбционного участка фермента

10)КИНЕТИКА ФЕРМЕНТАТИВНОГО КАТАЛИЗА

Скорость ферментативных реакций существенно зависит от многих факторов. К ним относятся концентрации участников ферментативно­го катализа (фермента и субстрата) и условия среды, в которой протека­ет ферментативная реакция (температура, pH, присутствие ингибито­ров и активаторов).

Химический состав белков достаточно разнообразен. В них содержатся многие химические вещества. Однако обязательными химическими элементами являются углерод (51 - 55%), кислород (21 - 23%), азот (16% - наиболее постоянная величина), водород (6- 7%) и сера (0,5 - 2%)

Аминокислотный состав белков .

Аминокислоты по химической природе являются производными карбоновых кислот , в которых атом водорода в α - положении замещён на аминогруппу. . В состав природных белков входят α-аминокислоты, которые отличаются структурой радикала у α-углеродного атома.

Н 2 N- СН - СООН

Номенклатура аминокислот . Аминокислоты имеют обычно тривиальные названия. В белках и пептидах обозначаются тремя первыми буквами их названия. Например, валин - вал, треонин - тре и т.д.

Классификация аминокислот. Аминокислоты классифицируют по структуре их углеводородного радикала и по полярности радикала аминокислот. Структура радикала и полярность аминокислот определяют характер образуемых ими связей в молекуле белка.

По структуре радикала выделяют 7 групп аминокислот:

  • аминокислоты, не имеющие радикала: глицин
  • аминокислоты с углеводородным радикалом: аланин, валин, лейцин, изолейцин, фенилаланин, пролин.
  • аминокислоты, содержащие в радикале карбоксильную группу: глютаминовая, аспарагиновая кислоты, глютамин, аспарагин
  • аминокислоты, содержащие в радикале аминогруппу: лизин, аргинин
  • аминокислоты, содержащие в радикале гидроксильную группу: серин, треонин, тирозин, гидроксипролин, гидрокислизин
  • аминокислоты, содержащие в радикале тиогруппу: цистеин, цистин, метионин
  • аминокислоты, содержащие гетероциклический радикал: гитидин, триптофан

По полярности радикала аминокислоты делятся на две группы:

1. Неполярные (гидрофобные) аминокислоты: аланин, валин, лейцин, изолейцин, фенилаланин, триптофан, пролин, гидроксипролин, метионин.

2. Полярные (гидрофильные) аминокислоты:

а) электронейтральные (незаряженные) аминокислоты: серин, треонин, цистеин, аспарагин, глютамин

б) кислые (отрицательно заряженные): глютаминовая, апарагиновая

в) основные (положительно заряженные) аминокислоты: лизин, аргинин, гистидин

Различают прочные, ковалентные связи: пептидные, дисульфидные и непрочные, нековалентные связи в молекуле белка: водородные, ионные, вандерваальсовые, гидрофобные.

Пептидные связи (- СО-NН -) являются основным видом связей в белках. Впервые они были изучены А.Я. Данилевским (1888 г.). Пептидные связи образованы путём взаимодействия α- карбоксильной группы одной аминокислоты и α - аминогруппы другой аминокислоты. Пептидная связь является сопряжённой связью, электронная плотность в ней смещена от азота к кислороду, в силу чего она занимает промежуточное положение между одинарной и двойной связью. Длина пептидной связи составляет 0,132 нм. Вращение атомов вокруг пептидной связи затруднено, атомы О и Н в ней находятся в транс-положении. Все атомы пептидной связи располагаются в одной плоскости.


Атомы О и Н пептидной связи могут дополнительно образовывать водородные связи с другой пептидной связью. Пептидные связи определяют порядок чередования аминокислот в полипептидной цепи белка, т.е. формируют первичную структуру белка. Пептидные связи - прочные связи (энергия разрыва составляет около 95 ккал/моль). Расщепление пептидных связей осуществляется при кипячении белка в присутствии кислот, щелочей или под действием ферментов пептидаз.

Дисульфидные связи (-S- S-) образованы двумя молекулами цистеина в составе белковой молекулы. Возможны внутрицепочечные дисульфидные «мостики» в пределах одной полипептидной цепи и межцепочечные связи между отдельными полипептидными цепями. Например, в молекуле гормона инсулина присутствуют оба варианта дисульфидных связей. Дисульфидные связи определяют пространственную укладку белковой молекулы, т.е. третичную структуру белков. Дисульфидные связи разрываются при действии некоторых восстановителей и при денатурации белка.

Водородные связи возникают между атомом водорода и электроотрицательным атомом, чаще кислородом. Водородные связи примерно в 10 раз слабее пептидных связей. Наиболее часто они возникают между атомом Н и атомом О различных пептидных связей: либо близко расположенных в молекуле белка, либо находящихся в разных полипептидных цепях. Огромное количество водородных связей фиксирует в белках в основном вторичную структуру (α-спираль и β - складчатую структуру) но также участвуют в образовании третичной и четвертичной структур белка. Непрочные водородные связи легко разрываются при денатурации белка.

Ионные связи образуются между противоположно заряженными аминокислотами в составе белковой молекулы (положительно заряженными лизином, аргинином, гистидином и отрицательно заряженными глютаматом и аспартатом). Ионные связи определяют пространственную укладку белков, т.е. формируют третичную и четвертичную структуры белков. Ионные связи разрываются при денатурации.

Ван-дер-ваальсовые взаимодействия - разновидность связей, возникающих при кратковременной поляризации атомов.

Гидрофобные связи возникают между неполярными (гидрофобными) радикалами аминокислот в полярном растворителе (вода). Гидрофобные радикалы погружаются внутрь белковой молекулы, меняя пространственное расположение полипептидной цепи. Гидрофобные взаимодействия имеют энтропийную природу, придают устойчивость молекуле белка, формируют его третичную, а также четвертичную структуру.

Русский язык