Линии на плоскости и их уравнения. Уравнение прямой, виды уравнения прямой на плоскости Линия на плоскости задана уравнением

Скачать с Depositfiles

АНАЛИТИЧЕСКАЯ ГЕОМЕТРИЯ

Лекция № 7. Тема 1 : Линии на плоскости и их уравнения

1.1. Линии и их уравнения в декартовой системе координат

В аналитической геометрии линии на плоскости рассматриваются как геометрическое место точек (г.м.т.), обладающих одинаковым свойством, общим для всех точек линии.

Определение. Уравнение линии
– это уравнение с двумя переменными
х и у , которому удовлетворяют координаты любой точки линии и не удовлетворяют координаты никакой другой точки, не лежащей на данной линии.

Верно и обратное, т.е. любое уравнение у

вида , вообще говоря, в декартовой

системе координат (ДСК) определяет линию

как г.м.т., координаты которых удовлетворяют

этому уравнению. О х

Замечание 1. Не всякое уравнение вида определяет линию. Например, для уравнения
не существует точек, координаты, которых удовлетворяли бы этому уравнению. Такие случаи в дальнейшем рассматривать не будем.
Это случай так называемых мнимых линий.

Пример 1. Составить уравнение окружности радиуса R с центром в точке
.

Для любой точки , лежащей у М

на окружности, в силу определения R

окружности как г.м.т., равноудаленных

от точки , получаем уравнение х

1.2. Параметрические уравнения линий

Существует ещё один способ задавать линию на плоскости при помощи уравнений, которые называются параметрическими :

Пример 1. Линия задана параметрическими уравнениями

Требуется получить уравнение этой линии в ДСК.

Исключим параметр t . Для этого возведём обе части этих уравнений в квадрат и сложим

Пример 2. Линия задана параметрическими уравнениями


а

Требуется получить уравнение

этой линии в ДСК. — а а

Поступим аналогично, тогда получим

а

Замечание 2. Следует отметить, что параметром t в механике явля-ется время.

1.3. Уравнение линии в полярной системе координат

ДСК является не единственным способом определять положение точки и, следовательно, задавать уравнение линии. На плоскости часто целесо-образно использовать так называемую полярную систему координат (ПСК).

ПСК будет определена, если задать точку О – полюс и луч ОР, исхо-дящий из этой точки, который называется полярной осью. Тогда положение любой точки определяется двумя числами: полярным радиусом
и полярным углом – угол между

полярной осью и полярным радиусом.

Положительное направление отсчета

полярного угла от полярной оси

считается против часовой стрелки.

Для всех точек плоскости
, О Р

а для однозначности полярного угла считается
.

Если начало ДСК совместить с

полюсом, а ось Ох направить по

полярной оси, то легко убедиться у

в связи между полярными и

декартовыми координатами:


О х Р

Обратно,

(1)

Если уравнение линии в ДСК имеет вид , то в ПСК — Тогда из этого уравнения можно получить урав-нение в виде

Пример 3. Составить уравнение окружности в ПСК, если центр окружности находится в полюсе.

Используя формулы перехода (1) от ДСК к ПСК, получим

Пример 4. Составить уравнение окружности,

если полюс на окружности, а полярная ось у

проходит через диаметр.

Поступим аналогично

О 2 R х

R

Данное уравнение можно получить и

из геометрических представлений (см. рис.).

Пример 5. Построить график линии

Перейдём к ПСК. Уравнение

примет вид
О

График линии построим с а

учётом его симметрии и ОДЗ

функции:

Данная линия называется лемнискатой Бернулли .

1.4. Преобразование системы координат.

Уравнение линии в новой системе координат

1. Параллельный перенос ДСК. у

Рассмотрим две ДСК, имеющие М

одинаковое направление осей, но

различные начала координат.

В системе координат Оху точка

относительно системы
О х

имеет координаты
. Тогда имеем

и

В координатной форме полученное векторное равенство имеет вид

или
. (2)

Формулы (2) представляют собой формулы перехода от «старой» системы координат Оху к «новой» системе координат и наоборот.

Пример 5. Получить уравнение окружности выполнив параллельный перенос системы координат в центр окружности.

Из формул (2) следует
у О

Основные понятия

Линия на плоскости часто задается как множество точек , обладающих некоторым только им присущим геометрическим свойством. Например, окружность радиуса R есть множество всех точек плоскости, удаленных на расстояние R от некоторой фиксированной точки О (центра окружности).

Введение на плоскости системы координат позволяет определять положение точки плоскости заданием двух чисел - ее координат, а положение линии на плоскости определять с помощью уравнения (т. е. равенства, связывающего координаты точек линии).

Уравнением линии (или кривой) на плоскости Оху называется такое уравнение F(х; у) = 0 с двумя переменными, которому удовлетворяют координаты х и у каждой точки линии и не удовлетворяют координаты любой точки, не лежащей на этой линии.

Переменные х и у в уравнении линии называются текущими координатами точек линии .

Уравнение линии позволяет изучение геометрических свойств линии заменить исследованием его уравнения.

Так, для того чтобы установить лежит ли точка А(х о; у о) на данной линии, достаточно проверить (не прибегая к геометрическим построениям), удовлетворяют ли координаты точки А уравнению этой линии в выбранной системе координат.

Пример 10.1 . Лежат ли точки К(-2;1) и Е(1;1) на линии 2х + у +3 = О?

Решение: Подставив в уравнение вместо х и у координаты точки К, получим 2. (-2) + 1 +3 = 0. Следовательно, точка К лежит на данной линии. Точка Е не лежит на данной линии, т. к.

2·1+1+3≠0

Задача о нахождении точек пересечения двух линий, заданных уравнениями F 1 (х;у) = 0 и F 2 (х;у)=0, сводится к отысканию точек, координаты которых удовлетворяют уравнениям обеих линий, т. е. сводится к решению системы двух уравнений с двумя неизвестными:

F 1 (х;у) = 0

Если эта система не имеет действительных решений, то линии не пересекаются.

Аналогичным образом вводится понятие уравнения линии в полярной системе координат.

Уравнение F(r,φ) = 0 называется уравнением данной линии в полярной системе координат , если координаты любой точки, лежащей на этой линии, и только они, удовлетворяют этому уравнению.

Линию на плоскости можно задать при помощи двух уравнений:

где х и у - координаты произвольной точки М(х; у), лежащей на данной линии, t - переменная, называемая параметром; параметр определяет положение точки (х; у) на плоскости.

Например, если х = + 1, у = t 2 , то значению параметра t 2 соответствует на плоскости точка (3; 4),

т.к. х = 2 + 1 = 3, у = 2 2 = 4.

Если параметр t изменяется, то точка на плоскости перемещается, описывая данную линию. Такой способ задания линии называется параметрическим, а уравнения (10.1) - параметрическими уравнениями линии.

Линию на плоскости можно задать векторным уравнением , где t - скалярный переменный параметр. Каждому значению t 0 соответствует определенный вектор плоскости. При изменении параметра t конец вектора ) опишет некоторую линию

Векторому уравнению линии в системе координат Оху соответствуют два скалярных уравнения (10.1), т. е. уравнения проекций на оси координат векторного уравнения линии есть ее параметрические уравнения.

Векторное уравнение и параметрические уравнения линии имеют механический смысл. Если точка перемещается на плоскости, то указанные уравнения называются уравнениями движения , а линия - траекторией точки, параметр t при этом есть время .

Итак, всякой линии на плоскости соответствует некоторое уравнение вида F(х;у) = 0.

Всякому уравнению вида F(х;у) = 0соответствует некоторая линия, свойства которой определяются данным уравнением (могут быть и исключения).

1 0 . Полярная система координат . Будем говорить, что на плоскости введена полярная система координат, если на ней выбрана точкаO – полюс, луч, выходящий из полюсаO – полярная ось и масштабный отрезок.

Пусть M – произвольная точка плоскости, не совпадающая с полюсомO (рис.3.4 хх). Первой полярной координатой точкиM (полярным радиусом) называется расстояние от точкиM до полюсаO . второй полярной координатой точкиM (или амплитудой) называется уголот полярной оси (луча
) до лучаOM . Для точкиO считают
,– произвольное число.

Из определения полярных координат и их геометрического смысла следует, что

Значения второй координаты, лежащие в пределах
называют главные значением угла.

Замечание . В полярной системе координат нет взаимно однозначного соответствия между точками плоскости и упорядоченной парой чисел (,):(,) соответствует единственная точка плоскости, но
соответствует бесчисленное множество пар (,+
).

Задать точку M в полярной системе координат означает задать два числаи:M (,).

Установим связь между декартовыми и полярными координатами (одной и той же) точки M .

Для этого введем оси
и
как показано на рис.3.5 хх. Масштабный отрезок полярной системы
примем и за масштабный отрезок декартовой системы
.

Пусть
– декартовы,
– полярные координаты некоторой точкиM . Тогда

и обратно,

По формулам (3.2) переходят от полярных координат к декартовым, по (3.2’) – от декартовых координат к полярным.

2 0 . Понятие линии и ее уравнения. Понятие линии является одним из самых трудных понятий математики. Общее определение линии дается в топологии (одном из разделов математики). Получено оно было в двадцатые годы прошлого столетия советским математиком П.С.Урысоном.

Здесь мы не будем заниматься определением линии ; дадим лишь определение того, что называетсяуравнением линии .

Определение 1 . Уравнением линии (обозначают (L ), либоL – без скобок) в декартовой системе координат называется уравнение

, (3.3)

которому удовлетворяют координаты
всех точек
и только координаты таких точек (то есть координаты точек, не лежащих на линииL , не удовлетворяют (3.3) – не обращают его в тождество).

В частности, уравнение линии L может иметь вид:

. (3.3’)

Определение 2 . Уравнением линии в полярной системе координат называется уравнение

, (3.4)

которому удовлетворяют полярные координаты
всех точек
и только координаты таких точек.

В частности, уравнение линии L в полярных координатах может иметь вид:

. (3.4’)

Определение 3 . Параметрическими уравнениями линииL в декартовой системе координат называются уравнения вида

(3.5)

где функции
и
имеют одну и ту же область определения – промежутокT .
соответствует точка
рассматриваемой линииL и
соответствует некоторому значению
(то есть

такое, что
и
будут координатами точкиM ).

Замечание 1 . Аналогично определяются параметрические уравнения линии в полярных координатах.

Замечание 2 . В курсе аналитической геометрии (на плоскости) рассматриваются две основные задачи:

1) известны геометрические свойства некоторой линии на плоскости; составить ее уравнение;

2) известно уравнение линии L ; построить эту линию, установить ее геометрические свойства.

Рассмотрим примеры.

Пример 1 . Найти уравнение окружностиL радиусаR , центр которой находится в точке
(рис.3.6 хх).

Замечание. Прежде, чем переходить к решению задачи, сделаем замечание (которому надо следовать и в дальнейшем): решение задачи на определение геометрического места точек начинается с введения произвольной («текущей») точки с координатами
этого геометрического места.

Решение . Пусть точка
– произвольная точка окружностиL . По определению, окружность есть геометрическое место точек, равноудаленных от фиксированной точки – ее центра:CM = R . По формуле (2.31) (в ней надо положить
) находим:

(3.6)

.– уравнение искомой окружности.

Если центр С лежит в начале координат, то
и уравнение

(3.6’)

есть уравнение такой окружности.

Пример 2 . Пусть криваяL задана уравнением:
. Построить эту кривую; установить, проходит ли она через точку
? через точку
?

Решение . Преобразуем левую часть данного уравнения, выделив в ней полные квадраты:или
– это уравнение определяет окружность с центром в точке
радиуса
.

Координаты точки
удовлетворяют уравнению окружности:– точкаO лежит на окружности; координаты же точки
не удовлетворяют уравнению окружности.

Пример 3 . Найти геометрическое место точек, отстоящих от точки
вдвое дальше, чем от точки
.

Решение . Пусть
– текущая точка (искомого) геометрического места. Тогдаи из условия задачи пишем уравнение:.

Возведем это равенство в квадрат и преобразуем:

– искомое место есть окружность с центром в точке
и радиусомR =10.

Приведем примеры на определение уравнений линий в полярной системе координат.

Пример 4 . Составить уравнение окружности радиусаR с центром в полюсеO .

Решение . Пусть
есть произвольная точка окружностиL (рис.3.7 хх). Тогда
или

(3.7)

– этому уравнению удовлетворяют точки, лежащие на окружности L , и не удовлетворяют точки, не лежащие на ней.

Пример 5 . Составить уравнение прямой, проходящей через точку
параллельно полярной оси (рис.3.8 хх).

Решение . Из прямоугольного треугольникаOAM следует, что
– имеем уравнение прямой в полярной системе координат.

Замечание . Уравнение прямой в декартовой системе координат:
; подставляя
из (3.2), получим
или
.

Пример 6 . Построить кривую.

Решение . Заметим, что кривая симметрична относительно полярной оси:
=
=
=
. Поэтому если точка
, то и точка
.

Даем полярному углу различные значения от=0 до=и определяем соответствующие этим углам значения. Запишем это в виде таблицы 1.

Таблица 1.

Из точки O проводим лучи
,
,…,
,
и откладываем на них отрезки
,
,…,
,
. Через полученные точки
,
,…,
,
проводим плавную линию – получим верхнюю половину кривой. Нижнюю достраиваем симметричным отражением верхней относительно полярной оси.

Полученная замкнутая кривая (рис.3.9 хх) называется кардиоидой (сердцеобразной).

Пример 7 . Записать уравнение линии
(равнобочной гиперболы) в полярной системе координат.

Решение . Заменяяx иy по формулам (3.2), получим, и
есть уравнение заданной линии в полярной системе координат.

Пример 8 . Записать уравнение кривой
в прямоугольной декартовой системе координат.

Решение . Запишем уравнение кривой в виде
. По формулам (3.2’) преобразуем его к виду
; возводя это равенство в квадрат, после несложных преобразований придем к уравнению
– эта кривая называется параболой (см. ниже).

Пример 9 . Приведем пример на параметрическое задание кривой. Пусть дана окружность радиусаR с центром в начале координат и пусть
– декартовы координаты текущей точкиM :M
. Пусть, далее,
– полярные координаты той же точки. По формулам (3.2) тогда

где параметр t принимает все значения от 0 до
, есть параметрическое уравнение искомой окружности.

Если центр С окружности взят в точке с координатами
, то, как нетрудно показать, формулы

дают параметрические уравнения соответствующей окружности.

Пусть на плоскости  задана декартова прямоугольная система координат Оху и некоторая линия L.

Определение . Уравнение F(x;y)=0 (1) называется уравнением линии L (относительно заданной системы координат), если этому уравнению удовлетворяют координаты х и у любой точки, лежащей на линии L, и не удовлетворяют координаты х и у ни одной точки, не лежащей на линии L.

Т.о. линией на плоскости называется геометрическое место точек {M(x;y)}, координаты которых удовлетворяют уравнению (1).

Уравнение (1) определяет линию L.

Пример. Уравнение окружности.

Окружность – множество точек, равноудаленных от заданной точки М 0 (х 0 ,у 0).

Точка М 0 (х 0 ,у 0) – центр окружности .

Для любой точки М(х;у), лежащей на окружности, расстояние ММ 0 =R (R=const)

ММ 0 ==R

(х-х 0 ) 2 +(у-у 0 ) 2 =R 2 –(2) уравнение окружности радиуса R с центром в точке М 0 (х 0 ,у 0).

Параметрическое уравнение линии.

Пусть координаты х и у точек линии L выражаются при помощи параметра t:

(3) – параметрическое уравнение линии в ДСК

где функции (t) и (t) непрерывны по параметру t (в некоторой области изменения этого параметра).

Исключая из уравнения (3) параметр t, получим уравнение (1).

Рассмотрим линию L как путь, пройденный материальной точкой, непрерывно движущейся по определенному закону. Пусть переменная t представляет собой время, отсчитываемое от некоторого начального момента. Тогда задание закона движения представляет собой задание координат х и у движущейся точки как некоторых непрерывных функций х=(t) и у=(t) времени t.

Пример . Выведем параметрическое уравнение окружности радиуса r>0 с центром в начале координат. Пусть М(х,у) – произвольная точка этой окружности, а t – угол между радиус-вектором и осью Ох, отсчитываемый против часовой стрелки.

Тогда x=r cos x y=r sin t. (4)

Уравнения (4) представляют собой параметрические уравнения рассматриваемой окружности. Параметр t может принимать любые значения, но для того, чтобы точка М(х,у) один раз обошла окружность, область изменения параметра ограничивается полусегментом 0t2.

Возведя в квадрат и сложив уравнения (4), получим общее уравнение окружности (2).

2. Полярная система координат (пск).

Выберем на плоскости ось L (полярная ось ) и определим точку этой оси О (полюс ). Любая точка плоскости однозначно задается полярными координатами ρ и φ, где

ρ – полярный радиус , равный расстоянию от точки М до полюса О (ρ≥0);

φ –угол между направлением вектора ОМ и осью L (полярный угол ). М(ρ; φ)

Уравнение линии в ПСК может быть записано:

ρ=f(φ) (5) явное уравнение линии в ПСК

F=(ρ; φ) (6) неявное уравнение линии в ПСК

Связь между декартовыми и полярными координатами точки.

(х;у) (ρ; φ) Из треугольника ОМА:

tg φ=(восстановление угла φ по известному тангенсу производится с учетом того, в каком квадранте находится точка М).(ρ; φ)(х;у). х=ρcos φ, y= ρsin φ

Пример . Найти полярные координаты точек М(3;4) и Р(1;-1).

Для М:=5, φ=arctg (4/3). Для Р: ρ=; φ=Π+arctg(-1)=3Π/4.

Классификация плоских линий.

Определение 1. Линия называется алгебраической, если в некоторой декартовой прямоугольной системе координат, если она определяется уравнением F(x;y)=0 (1), в котором функция F(x;y) представляет собой алгебраический многочлен.

Определение 2. Всякая не алгебраическая линия называется трансцендентной .

Определение 3 . Алгебраическая линия называется линией порядка n , если в некоторой декартовой прямоугольной системе координат эта линия определяется уравнением (1), в котором функция F(x;y) представляет собой алгебраический многочлен n-й степени.

Т.о., линией n-го порядка называется линия, определяемая в некоторой декартовой прямоугольной системе алгебраическим уравнением степени n с двумя неизвестными.

Установлению корректности определений 1,2,3 способствует следующая теорема.

Теорема (док-во на с.107). Если линия в некоторой декартовой прямоугольной системе координат определяется алгебраическим уравнением степени n, то эта линия и в любой другой декартовой прямоугольной системе координат определяется алгебраическим уравнением той же степени n.

Уравнение линии на плоскости.

Как известно, любая точка на плоскости определяется двумя координатами в какой- либо системе координат. Системы координат могут быть различными в зависимости от выбора базиса и начала координат.

Определение. Уравнением линии называется соотношение y = f (x ) между координатами точек, составляющих эту линию.

Отметим, что уравнение линии может быть выражено параметрическим способом, то есть каждая координата каждой точки выражается через некоторый независимый параметр t .

Характерный пример – траектория движущейся точки. В этом случае роль параметра играет время.

Уравнение прямой на плоскости.

Определение. Любая прямая на плоскости может быть задана уравнением первого порядка

Ах + Ву + С = 0,

причем постоянные А, В не равны нулю одновременно, т.е. А 2 + В 2 ¹ 0. Это уравнение первого порядка называют общим уравнением прямой.

В зависимости от значений постоянных А,В и С возможны следующие частные случаи:

C = 0, А ¹ 0, В ¹ 0 – прямая проходит через начало координат

А = 0, В ¹ 0, С ¹ 0 { By + C = 0}- прямая параллельна оси Ох

В = 0, А ¹ 0, С ¹ 0 { Ax + C = 0} – прямая параллельна оси Оу

В = С = 0, А ¹ 0 – прямая совпадает с осью Оу

А = С = 0, В ¹ 0 – прямая совпадает с осью Ох

Уравнение прямой может быть представлено в различном виде в зависимости от каких – либо заданных начальных условий.

Расстояние от точки до прямой.

Теорема. Если задана точка М(х 0 , у 0), то расстояние до прямой Ах + Ву + С =0 определяется как

.

Доказательство. Пусть точка М 1 (х 1 , у 1) – основание перпендикуляра, опущенного из точки М на заданную прямую. Тогда расстояние между точками М и М 1:

(1)

Координаты x 1 и у 1 могут быть найдены как решение системы уравнений:

Второе уравнение системы – это уравнение прямой, проходящей через заданную точку М 0 перпендикулярно заданной прямой.

Если преобразовать первое уравнение системы к виду:

A(x – x 0) + B(y – y 0) + Ax 0 + By 0 + C = 0,

то, решая, получим :

Подставляя эти выражения в уравнение (1), находим:

.

Теорема доказана.

Пример. Определить угол между прямыми: y = -3 x + 7; y = 2 x + 1.

K 1 = -3; k 2 = 2 tg j = ; j = p /4.

Пример. Показать, что прямые 3х – 5у + 7 = 0 и 10х + 6у – 3 = 0 перпендикулярны.

Находим: k 1 = 3/5, k 2 = -5/3, k 1 k 2 = -1, следовательно, прямые перпендикулярны.

Пример. Даны вершины треугольника А(0; 1), B (6; 5), C (12; -1). Найти уравнение высоты, проведенной из вершины С.

Геометрия