Фрактальная размерность изображения равна 2. Фрактальный анализ совместного движения валют. Компютерные модели фракталов

Автор Рыбаков Д.А.

Фрактальная размерность

Реферат 1

Фрактальная размерность 1

Введение 2

Предыстория 3

Фракталы 5

Классификации фракталов 5

Геометрические фракталы 6

Алгебраические фракталы 6

Стохастические фракталы 8

Хаусдорфово расстояние между множествами 9

Топологическая размерность 11

Обобщение формул для объема n-мерных тел. 12

Размерность Минковского 13

Размерность Хаусдорфа-Безиковича 14

Компютерные модели фракталов 15

Вычисление размерности Минковского с помощью ЭВМ 17

Мультифракталы и обобщенные размерности Реньи dq 22

Фрактальная размерность d0 25

Информационная размерность d1 25

Корреляционная размерность d2 27

Функция мультифрактального спектра f(a) 27

Другие подходы к измерению размерности. 28

Гармоническая мера 29


Физический смысл фрактальных величин 30


Введение

Традиционная геометрия и тополигия далеко не полно описывают природные формы. Природа демонстрирует совершенно иной уровень сложности форм, отличный от прямых линий, эллипсов и других известных форм. Естественные формы зачастую оказываются неправильными, сильно фрагментированными и имеют фрактальную структуру. Исторически получилось так, что многие математики откладывали в сторону трудные формы, которые портили красоту их выкладок. В результате созданные ими идеализированные объекты весьмы редко встречаются в природе в чистом виде. В природе нет прямых линий, идеальных окружностей, плоскостей и тд.. Всевозможные возмущения, которыми пренебрегают, постоянно вносят свой вклад и портят иллюзию простоты.

К примеру, если взять кромку деревянной линейки, то она традиционно описывается с помощью отрезка прямой линии. Но современные данные говорят о том, что эта кромка далеко не идеально ровная, - в мелком масштабе существуют различные впадины и выступы. Погружаясь дальше можно обнаружить древесные волокна, которые состоят из еще более мелких волокон и пор. В более мелком масштабе все это состоит из молекул и атомов, которые постоянно вибрируют и меняются местами.

Несмотря на эти неровности, математическая идеализация кромки линейки с помощью отрезка является наиболее подходящей. Но такие прямые объекты - большая редкость в природе. Что делать с такими формами, которые принимают облака, клубы дыма, рельеф гор, русла рек, морские побережья, молнии, пути броуновского движения, диффузионные фронты, галактические скопления, волны в океане, перколяционные кластеры, синергетические структуры и тд и тп? В этих объектах почти нет никаких классических гладких участков. Традиционная геометрия уходит в бесконечную рекурсию при попытке описать. Подходы к их описанию и количественным оценкам появились достаточно недавно. Отцом фрактальной геометрии является Бенуа Мандельброт. Его фундаментальный труд был впервые опубликован в 1977 году.

В данном реферате будут отражены недостатки классического подхода к описанию физических явлений и обзор фрактальных величин. В реферате описаны такие фрактальные величины как: различные виды рамерности и гармоническая мера. Подробно освещены вопросы, связанные с компьютерным моделированием.

Не освещеными остались вопросы:

Фрактальные временные ряды и закон Херста,

Соотношение между мультифрактальным спектром f(a) и показателем массы (а)

Дробные производные и интегралы

Векторные и скалярные поля с фрактальными характеристиками

Задачи перколляции,

Является ли фрактальная математика новой парадигмой в науке?

Предыстория

Простые истины алгебры, геометрии, теории чисел и теории множеств проделали достаточно долгий путь от интуитивных догадок до строгих выкладок. Математиков, которые находили каверзные контрпримеры все это время недолюбливали, так как они вызывали кризис здравого смысла, к которому стремились остальные ученые.

Полани писал "...в научном исследовании всегда имеются какие-то детали, который ученый не удостаивает особым вниманием в процессе верификации точной теории. Такого рода личностная избирательность является неотъемлемой чертой науки."

Большинство ученых старались отстраниться от трудных линий.

Примером может служить история с кривой Хельге фон Коха описанная в 1904 году.

Чуть ли не единодушно ученые провозгласили кривую Коха чудо­вищной! За подробностями обратимся к работе Хана «Кризис здраво­го смысла» . Хан пишет: «Характер неспрямляемой кривой или кривой, к которой невозможно провести касательную совершенно не укладывается в рам­ки того, что мы можем понять интуитивно. В самом деле, всего лишь после нескольких повторений простой операции сегментирования обра­зующаяся фигура становится настолько сложной, что с трудом поддается непосредственному восприятию, а уж то, к чему эта кривая стремится в пределе, и вовсе невозможно себе представить. Только с помощью разу­ма, применяя логический анализ, мы можем до конца проследить эволю­цию этого странного объекта. Если бы мы положились в данном случае на здравый смысл, то составленное нами представление оказалось бы в корне ошибочшным, поскольку здравый смысл неизбежно привел бы нас к заключению, что кривых, не имеющих касательной ни в одной своей точке, попросту не бывает; Этот первый пример неадекватности интуитивного подхода затрагивает самые фундаментальные концепции дифференцирования ».

Подобное, единогласное недоумение математического сообщества вызвала кривая Джузеппе Пеано. Эта кривая может заполнить всю плоскость без остататка и при этом она не содержит самопересечений. Свой вклад в построение подобных множеств внес Госпер.

Кроме Пеано и Коха, свой вклад в кризис внесли Георг Кантор с его множеством, называемым «фрактальной канторовой пылью». Также Жанн Перен и Норберт Винер нашли нестандартные математические свойства в давно известном броуновском движении. Серпиньский и Менгер построили свои известные множества. Босман построил Дерево Пифагора. Дирихле привел пример разрывной в каждой точке функции.

Фракталы

Фракта́л (лат. fractus - дроблёный) - термин, введённый Бенуа Мандельбротом в 1975 году. До сих пор нет строгого математического определения фрактальных множеств. Свой фундаментальный труд Мандельброт выполнил в жанре эссе, как бы давая читателям простор для фантазии и позволив им соучаствовать в процессе разработки теории и её приложений. Заслуга Мандельброта в том, что он смог обобщить и систематезировать «неприятные» множества и построить красивую и интуитивно понятную теорию. Он открыл для нас удивительный мир фракталов, красота и глубина которых порой поражают воображение, вызывают восторг у ученых, хужожников, философов… Работа Мандельброта была стимулирована передовыми компьютерными технологиями, которые позволили генерировать, визуализировать и исследовать различные множества. Ни одна работа по фраталам не обходится без красивых иллюстраций.

Классификации фракталов


В

Фрактальная форма подвида цветной капусты Brassica cauliflora
основном фракталы делят на
геометрические, алгебраические и стохастические. При определенных условиях стохостические фракталы могут называться м ультифракталы.

Однако существуют и другие классификации:

Рукотворные и природные. К рукотворным относятся те фракталы, которые были придуманы учёными, они при любом масштабе обладают фрактальными свойствами. На природные фракталы накладывается ограничение на область существования - то есть максимальный и минимальный размер, при которых у объекта наблюдаются фрактальные свойства.

Детерминированные (алгебраические и геометрические) и недетерминированные (стохастические).

Геометрические фракталы


История фракталов началась с геометрических фракталов, которые исследовались математиками в XIX веке. Фракталы этого класса - самые наглядные, потому что в них сразу видна самоподобность.

В двухмерном случае такие фракталы можно получить, задав некоторую ломаную, называемую генератором. За один шаг алгоритма каждый из отрезков , составляющих ломаную, заменяется на ломаную-генератор, в соответствующем масштабе. В результате бесконечного повторения этой процедуры (а точнее, при переходе к пределу) получается фрактальная кривая. При видимой сложности полученной кривой, её общий вид задается только формой генератора.

Примерами таких кривых служат:


  • кривая дракона;

  • кривая Коха;

  • кривая Леви;

  • кривая Минковского;

  • кривая Пеано.
К геометрическим фракталам также относят фракталы, получаемые похожими процедурами, например:

  • множество Кантора;

  • треугольник Серпиньского;

  • коврик Серпиньского;

  • кладбище Серпиньского;

  • губка Менгера;

  • дерево Пифагора.

Алгебраические фракталы


Для построения алгебраических фракталов используются итерации нелинейных отображений, задаваемых простыми алгебраическими формулами.

Наиболее изучен двухмерный случай. Нелинейные динамические системы могут обладать несколькими устойчивыми состояниями. Каждое устойчивое состояние (аттрактор) обладает некоторой областью начальных состояний, при которых система обязательно в него перейдет. Таким образом, фазовое пространство разбивается на области притяжения аттракторов.

Если фазовым является двухмерное пространство, то, окрашивая области притяжения различными цветами, можно получить цветовой фазовый портрет этой системы (итерационного процесса). Меняя алгоритм выбора цвета, можно получить сложные фрактальные картины с причудливыми многоцветными узорами. Неожиданностью для математиков стала возможность с помощью примитивных алгоритмов порождать очень сложные нетривиальные структуры.

Алгоритм построения достаточно прост и основан на итеративном выражении:

где F(z) - какая-либо функция комплексной переменной.

Для всех точек прямоугольной или квадратной области на комплексной плоскости вычисляем достаточно большое количество раз zi + 1 = F(zi), каждый раз находя абсолютное значение z. При этом значения функции для разных точек комплексной плоскости могут иметь разное поведение:


  • С течением времени | z | стремится к бесконечности;

  • | z | стремится к 0;

  • | z | принимает несколько фиксированных значений и не выходит за их пределы;

  • Поведение | z | хаотично, без каких-либо тенденций.
Одним из самых распространённых способов раскрашивания точек будет сравнение | z | с заранее выбранным числом, которое считается «бесконечным», т. е. цвет точки равен номеру итерации, на которой | z | достиг «бесконечности», или чёрному в противном случае.

Также можно изменить вид фрактала, если контроль значения z вести другим образом, например:


  • Действительная часть z меньше определённого числа;

  • Мнимая часть z меньше определённого числа;

  • И мнимая и действительная части z меньше какого-либо числа;

  • Другие способы.
И, наконец, ещё один интересный эффект - изменение палитры. После того, как изображение построено, можно циклически изменять цвета закрашенных областей, и тогда и без того удивительное изображение «оживёт» на экране.

Примеры алгебраических фракталов:


  • множество Мандельброта;

  • множество Жюлиа;

  • бассейны Ньютона;

  • биоморфы.

Стохастические фракталы


Все природные объекты создаются по капризу природы, в этом процессе всегда есть случайность. Фракталы, при построении которых в итеративной системе случайным образом изменяются какие-либо параметры, называются стохастическими. Эти фракталы наиболее интересны для физиков, так как находят свое отражение в физических процессах. Соотношение случайности и закономерности может быть разным.

Хаусдорфово расстояние между множествами


Хаусдорф придумал оригинальню метрику, которая пременима к множествам из n . Она играет важную роль в математике фракталов.
Мы будем руководствоваться интуитивно понятным определением. Так же здесь не будет приведено доказательство, что расстояние Хаусдорфа обладает всеми свойствами метрики.

Пусть Е и F – это 2 непустых компактных подмножества n

Пусть число r>0.

Пусть B r – замкнутый шар с центром в начале координат.

Определение : дилатация E радиуса r (обозначается E + r) называется векторная сумма E + B r

Определение: Расстояние Хаусдорфа

H(F,E) = min{>0: E  F +  и F  E + }


Пример: Пусть А и В – эллипсы

Наименьшее , при котором А  B + и B  А + составляет 3.5, то есть H(A,B)=3.5.

Размерность

Существуют разные размерности для множеств. Привычные со школьной скамьи представления о трехмерном пространстве, двухмерной плоскости, одномерной линии и тд имеют весьма поверхностный и упрощенных взгляд на все многообразие, которое скрывает в себе термин размерность. Далее мы рассмотрим строгие алгебраические теории, филосовские и практические концепции размерности. Зачастую концепции размерности строятся через обнаружение параметров, которые относятся покрывающим множествам. Но это не единственный способ.


Так же будут рассмотрены дробные размерности, практическая значимость которых была показана Мадельбротом в 1970x годах.

Размерность сильно зависит от того как ее измерять. Это означает , что кроме формул для подсчета размерности необходимо точно задать и некий операциональный набор способа измерения и интерпретации размерности. Традиционно с размерностью связывают количество независимых параметров, необходимых что бы задать положение точки в пространстве. Положение точки области плоскости, ограниченной квадратом можно задать двумя измерениями, и тогда ее размерность будет равна двум. А можно исхитриться, и представить себе эту область в виде ломаной с очень сильно прижатыми друг к другу звеньями, сложенными наподобие столярного метра, например кривой Пеано. Тогда, для задания положения точки хватит и одного измерения, и размерность будет равна единице. Далее мы постораемся привести различные размерности и способы их измерений а так же дать информацию об их практическом применении.

Топологическая размерность


Топологическая размерность - это обычная геометрическая размерность. Она принимает исключительно целые значения.

Топологическая размерность отрезка линии равна 1, квадрата - 2, куба - 3. В простых явлениях она характеризует зачастую (но не всегда!) количество степеней свободы или количество параметров, необходимых для однозначного задания любой точки множества.

Теория топологической размерности – это развитая область математики. Строгое математическое определение для метрических и топологических пространств пренадлежит Лебегу и иногда этот вид размерности называется размерность Лебега. Так же свой вклад внесли Урысон и Брауэр.

Топологическая размерность определяется индуктивным способом, поэтому её еще иногда нызавют индуктивной размерностью.

Приведем краткое определение для метрических пространств

Определение: Для компактного метрического пространства X размерность Лебега определяется как наименьшее целое число n, обладающее тем свойством, что при любом существует конечное открытое -покрытие X, имеющее кратность ;

При этом -покрытием метрического пространства называется покрытие, все элементы которого имеют диаметр , а кратностью конечного покрытия пространства X называется наибольшее такое целое число k, что существует точка пространства X, содержащаяся в k элементах данного покрытия.

Премеры топологически одномерных пространств: окружность, салфетка Серпиньского, коврик Серпиньского, губка Менгера.

Обобщение формул для объема n-мерных тел.


Одной из предпосылок для введения дробных размерностей служат формулы объемов n-мерных тел, которые плавным образом зависят от n.

Например объем n-мерного куба V куба = L n , nN. Для евклидовых пространств n принимает только неотрицательные целые значения. Формула легко обобщается. Для пространств, задаваемых фрактальными множествами n может принимать вещественные неотрицательные значения. V куба = L D где D  R + .

Соответствующее обобщение можно сделать для шара

Точный объем шара V шара = r D (D)


Где (D) = Г(1/2) D / Г(1+D/2)

Где Г – непрерывная функция. Для целых чисел Г(n+1)=n!

Для рациональных - Г(x) = o   exp(-t) t x -1 dt ,

Размерность Минковского


Предыдущее обобщение служит поводом для обобщение рамерности для компактного множества А n . Приведем краткое определение. Для этого аппроксимируем А объединением шаров и просуммируем их объемы (или меры в общем случае).

Пусть N() - минимальное число шаров радиса , необходимых для покрытия компактного множества А. Их суммарный объем V пропорционален N() D . При 0 , N()const /  D . Логарифмируем и получаем ln N()ln const - D ln() .

ln 
n const - ln N()

При 0 значение ln(const) пренебрежимо мало по сравнению с ln(N())

Таким образом приходим к определению размерности Минковского

d
ln 

0
im M (A) = D = - lim

Путем подмены метрики доказывается, что вместо шаров могут быть использованы кубы.

Следует отметить, что нахождение минимального числа шаров - не тривиальная задача.

Рассмотрим пример: пусть А есть единичный отрезок в пространстве n . Его можно покрыть N шарами радиуса 0.5/N.

ln 0.5/N()

0
D = - lim = 1

Размерность Хаусдорфа-Безиковича


Эта размерность имеет сходство с размерностью Минковского. Разница в том, что шары берутся произвольного радиуса 0 Пусть А является произвольным множеством А n . Рассмотрим последовательность шаров r i Используя обобщеную формулу объема (или меры в общем случае) шара запишем


Феликс Хаусдорф смог доказать, что существует единственное вещественное число d, для которго S  0 и S   при 0 . Свой вклад в строгое доказательства теоремы внес Абрам Безикович, поэтому размерность d называется размерность Хаусдорфа-Безиковича.

В начале эта величина не вызывала большого интереса у ученых. Но в последующем она сыгарала важную роль в математике фракталов. В математическов литературе она обозначается как dim H (A).

Компютерные модели фракталов


Для большинства физических приложений исследуются одно, двух и трех – мерные множества. Наиболее удобными являются покрытия с помощью отрезков, квадратов или кубов в виде ломанной линии, сетки или решетки соответственно. С помощью ЭВМ невозможно представить фрактал полностью во всех его деталях. Обычно точность вычислений не превышает несколько десятков знаков после запятой, что не позволяет представить мелкие или очень крупные части. Фрактал в ЭВМ можно представить как минимум тремя способами. Приведенное ниже описание легко обобщается на случаи большей размерности.


  1. Клеточный, решетчатый или растровый способ. В этом способе пространство представлено в виде програмного массива чисел. Например: var space: array of boolean; Если space = true значит элемент принадлежит фракталу и наоборот. i,j – целые числа.

  2. Векторный способ. Это более точный способ. Элементы фрактала представлены в виде элементарных фигур, которые задаются векторно. В этом случае для того, что бы определить, принадлежит ли точка (x,y) необходимо перебрать элементы фрактала и вычислить, попадает эта точка хоть в один элемент. x и y – числа с плавающей точкой.

  3. Функциональный способ. В данном способе что бы определить принадлежит ли точка (x,y) необходимо вычислить функцию F(x,y) и проанализировать полученное значение. На самом деле все способы сводятся к функциональному способу. Просто, некоторые функции могут вычислятся аналитически, а некоторые обращаться к массивам данных для получения результата. Мы будем ссылаться на этот метод имея ввиду, что исползуются аналитические функции.

Большинство задач на момент написания реферата использует клеточный (растровый) метод №1 для моделирования множеств. Этот метод обладает несколькими недостатками. Для детального моделирования требуется L n ­ клеток. Где L – количество клеток в одном измерении n-количество измерений. Современная мощность компьютеров позволяет беспрепятственно моделировать 2х-мерные множетва. Для них L~ 10 3 . Для моделирования 3х мерных множеств требования к ОЗУ резко возрастают. Для таких задач L ~ 100, что явно недостаточно для полноценного моделирования. Альтернативой клеточной модели может служить векторная модель.


Для моделирования 3х-мерных физических стохастических фракталов применим векторный метод. Растровый метод вообще мало применим для 3х мерного моделирования. А аналитические функции, описывающие что-либо физическое стохастическое достаточно редки. Можно придумать пример, основанный на алгоритмах генерации случайных чисей, которые при одних и тех же (х,у,z) возвращают одинаковые значения. Например: F(x,y,z) = f(x,y,z) + MD5(x,y,z, r), где f – аналитическая функция, r – константый случайный параметр, MD5 – функция вычисления MD5 суммы. Но этот способ требует тщательного вероятностного анализа получаемых значений что бы результат был близок к какой-нибудь физической задаче.

Применимость методов моделирования.


Так же кратко стоит упомянуть о методах постоения фрактала. Для постоения геометрических фракталов используется Система Итерируемых Функций. Для алгебраических используются итерации нелинейных отображений, задаваемых простыми алгебраическими формулами. Для стохастических, все зависит от природы фрактала и сотношения закономерности и случайностей.

Вычисление размерности Минковского с помощью ЭВМ


Следует отметить, что описанным ниже способом вычисляется не только размерность Минковского, но и Хаусдорфа, хотя для некоторых множеств(например для счетных множеств) эти размерности, вычисленные аналитически могут отличаться [КОН 135]. Но в большинсте важных случаев эти размерности совпадают.

За основу берется формула зависимости количества кубов N от длины грани куба  при малых  в покрываещем множестве.

ln const – ln N()  d ln 

Как видно из формулы, если построить график зависимости ln N от ln  , то получится прямая с наколном d.


Разберём алгоритм на примере 2х мерного случая. Эта процедура используется для анализа изображений. Большинство изображений представлены в растровом виде, то есть в виде двухмерного массива .

Итерация 1

Исходное изображение

Итерация 2

Построив сетки для разных  получаем таблицу:





N

1

917

2

354

3

206

4

141

5

102

6

82

7

66

8

56



ln 

График получается не идеально ровным. Наклон этого графика вычисляется методом наименьших квадратов. В данном примере наклон равен -1.346 , то есть d=1.346


Еще одним недостатком этого метода является то, что используемое покрытие неминимально. Поск минимально покрытия – нетривиальная задача. Затраты на его вычисление могут оказаться огромными, а полученное улучшение небольшим.

Одним из эффектов вычислений может служить следующее ступенчатое поведение графика.

Этот эффект проявляется при плавном изменении  между итерациями. На приведенном рисунке разница  между соседними точками составляет 1%. Эффект проявляется для всех типов фракталов и зависит от алгорима подсчета размерности.


Для наглядности рассмотрим простой случай, когда покрытие состоит из одноги и двух кваратов.


Для клеточных моделей существуют естественные ограниения 1L. Для векторных моделей ограничение менее строгое 0>L. Это означает, что  можно достаочно близко приближать к 0, эта близость ограничена только точностью вычислений конкретной ЭВМ. Это приводит еще к одной проблеме. Если модель состоит из конечного количества векторных объектов, то начиная с некоторого момента  может стать намного меньше размера любого объекта. Это приводит к тому, что наклон графика становится равным топологической размерности объектов. То есть проблема состоит в том, что бы выбрать нужный диапазон для , который имеет физический смысл. От выбора диапазона зависит получаемая величина. Интуитивно можно предположить, что    L, где средняя  – длина объектов, составляющих множество, а L – размер всего ансамбля. Выбор диапазона может быть договорным для разных типов явлений, пока не будет создана точная математическая теория для фракталов, задаваемых в ЭВМ.

Точечный метод. Точечный метод является альтернативой к предыдущему методу. Этот метод применим к клеточным(растровым) моделям.

Рас­смотрим сетку, покрывающую весь фрактал. Ее узлы будем назы­вать ячейками. Каждую ячейку, имеющую с фракталом непустое пересечение, будем считать за одну точку. Ясно, что именно эта схема реализуется при графическом выводе фрактала на экран как массива пикселов. В этом параграфе «подсчет числа точек в клетке» означает подсчет числа ячеек (или пикселов) в клетке. Это не то же самое, что считать действительное число геометрических точек в клетке - ведь их бесконечно много. Точечный метод принципиально отличается от клеточного; в первом подсчитывается число точек в клетке, а во втором - число клеток, необходимых для покрытия фрактала. Для упрощения вычислений будем считать клетки квадратными. Размер L клетки означает число ячеек по каждой стороне. Ограни­чимся нечетными значениями L; в этом случае центральная ячей­ка клетки будет равноудалена от всех сторон. Сначала вычислим вероятности Р(m, L) того, что клетка размера L содержит m точек (ячеек) фрактала. Для этого вокруг каждой точки фрактала, считая ее центральной, построим клетку размера L и подсчитаем число точек, попавших в нее. Предположим, что фрактал содержит М точек. Тогда P(m, L) равно числу клеток, содержащих m точек, m = 1,...,М, деленному на М. Заметим, что сумма всех вероятностей равна единице:

Как и в предыдущем алгоритме, N(L) есть число клеток раз­мера L, необходимых для покрытия фрактала. Как подсказывает интуиция, число клеток размера L, содержащих m точек, равно (М/m)Р(m,L). Поэтому оценка числа клеток, покрывающих все изображение, равна

где К - возможное число точек в клетке. Следовательно,

также пропорционально L d и может быть использовано для оценки фрактальной размерности d.


Заключение: вычисление фрактальной размерности является развивающейся областью. Существуют разные способы ее вычисления.

Мультифракталы и обобщенные размерности Реньи d q


Дадим общее определение мультифракталов. Рассмотрим фрактальный объект, занимающий некую ограниченную область A, имеющую diamA = L в евклидовом пространстве размерности n. Пусть на каком-то этапе его построения он представляет собой множество точек из N>>1, как-то распределенных в этой области. В конце концов предполагаем, что N.

Множество точек может представлять собой некоторую популяцию, состоящую из особей одного вида распределенных по области A. Такой популяцией могут быть, например, народонаселение или сеть метеостанций. Обе популяции неравномерно распределены по поверхности Земли. Пространственное распределение энергии, распределение ошибок в канале связи, распределение примесей в жидких средах, масс в веществе - примеры таких популяций . Важно отметить, что неравномерное распределение особей остается в силе независимо от линейного масштаба.

Разобьем всю область A на гиперкубические ячейки со стороной  и объемом  d соответственно. Далее нас будут интересовать только занятые ячейки, в которых содержится хотя бы одна точка. Обозначим N() число таких ячеек, оно очевидно зависит от . Пусть n i () - число точек в i-й ячейке. Тогда величина

Есть вероятность того, что некоторая точка содержится в i-м кубике. То есть эта вероятность характеризует относительную заселенность ячейки. По правилу нормировки вероятностей:

Введем в рассмотрение так называемую обобщенную статистическую сумму, характеризуемую показателем q:

где -  q  +.

Определение . Спектром обобщенных фрактальных размерностей Реньи, характеризующих распределение точек в области А называется совокупность величин:

Для обычного однородного фрактала все эти размерности совпадают. То есть если d q = const, т.е. не зависит от q, то рассматриваемое множество точек представляет собой обычный, регулярный фрактал, который характеризуется всего лишь одной величиной - фрактальной размерностью d H . Напротив, если функция d q как-то меняется с q, то рассматриваемое множество точек является мультифракталом.

Таким образом, мультифрактал в общем случае характеризуется нелинейной функцией (q),определяющей поведение статистической суммы Z(q,) при 0

Следует иметь ввиду, что предельный нереход при 0 надо выполнять, помня, что ему всегда предшествует предел N0.

В случае обычного фрактала функция

т.е. является линейной. Тогда все d q =d и действительно не зависят от q. Для фрактала, все обобщенные фрактальные размерности d q которого совпадают, часто используется термин монофрактал.

Если распределение точек по ячейкам неодинаково, то фрактал является неоднородным, т.е. представляет из себя мультифрактал, и для его характеристики необходим целый спектр обобщенных фрактальных размерностей d q , число которых, в общем случае, бесконечно.

Так, например, при q основной вклад в обобщеннную статистическую сумму вносят ячейки, содержащие наибольшее число частиц n i в них и, следовательно, характеризующиеся наибольшей вероятностью их заполнения p i . Наоборот, при q - оcновной вклад в сумму дают самые разреженные ячейки с малыми значениями чисел заполнения p i . Таким образом, функция d q показывает, насколько неоднородным является исследуемое множество точек A.


Фрактальная размерность d 0


Выясним теперь, какой физический смысл имеют обобщенные фрактальные размерности d q для некоторых конкретных значений q. Так, при q=0 из выражения

следует, что

С другой стороны

Сопоставляя эти два равенства, мы приходим к соотношению N()~ d 0 Это означает, что величина d 0 представляет собой обычную хаусдорфову размерность множества A. Она является наиболее грубой характеристикой мультифрактала и не несет информации о его статистических свойствах.


Информационная размерность d 1


Теперь, устремляя q1, раскладывая экспоненту и учитывая условие нормировки, получаем

В результате мы приходим к следующему выражению

С точностью до знака числитель в этой формуле представляет собой энтропию фрактального множества:

Такое определение энтропии множества полностью идентично используемому в термодинамиаке, где под pi понимается вероятность обнаружить систему в квантовом состоянии i . В результате величина обобщенной фрактальной размерности d1 связана с энтропией соотношением

В термодинамике энтропия есть мера беспорядка в системе.

то величина d1 характеризует информацию, необходимую для определения местоположения точки в некоторой ячейке. В связи с этим обобщенную фрактальную размерность d1 часто называют информационной размерностью. Она показывает, как информация, необходимая для определения местоположения точки, возрастает при стремлении размера ячейки  к нулю.


Корреляционная размерность d 2


Не будем приводить полные выкладки. При вычислении суммы Z мы можем ввести кореляционный интеграл I() и получаем зависимость вероятности того, что две произвольно выбранные точки из множества A лежат внутри одной ячейки с размером .

Мы приходим к выводу, что обобщенная размерность d2 определяет зависимость корреляционного интеграла I() от . По этой причине величину d2 называют корреляционной размерностью.


Функция мультифрактального спектра f(a)


Размерности Реньи не являются фрактальными размерностями в строгом понимании, по этой причине они называются обобщенными. Существует функция мультифратального спектра, которая имеет непосредственное отношение к фрактальности.

При подсчете статистической суммы в спектре Реньи суммируются ячейки с разной заполненностью. Функция же мультифрактального спектра f(a) характеризует собой хаусдорфову размерность однородного фрактального подмножетва A a  A, характеризуемого одинаковыми вероятностями заполнения ячеек p i ~  a . Таким образом становится более понятным термин мультифрактал – его можно понимать как объеденение однородных фракталов.

Типичный вид функции f(a) :


Функция f(a) обладает следующими свойствами f(a)  d 0, f(a)  а. Знак равенства появляется, для полностью однородного фрактала.

Другие подходы к измерению размерности.


Существует зависимость поведения некоторых объектов от размерности пространства в котором они определены. Этот принцип является еще одним подходом к измерению размерности в пространстве, определяемым фракталом.

Таким примером может служить случайное броуновское движение. Можно рассмотреть броуновское движение внутри фрактала и посчитать зависимость расстояния до центра от времени. В работе профессора Шломо анализируется подобное движение в клеточной 2х мерной модели фрактала и возможные экспоненты для разных величин.

Можно отметить, что одним из таких интуитивно понятнях процессов является расширение шара. Если определить понятие шара в простантве, определенным фракталом, то можно посмотреть зависимость его объема от радиуса и тем самым вычислить степенные показатели этого расширения. То же самое можно проделать и с площадью шара. Можно отслеживать соотношения периметра и площади.

Гармоническая мера

При описании физических явлений бывает важно знать, эффективную площадь взаимодействия объекта со средой. Если объект фрактальный, то площадь как таковая не существует. Для такого описания существует так называемая гармоническая мера – распределение вероятности того, что частица, начав движение с бесконечности каснется определенной области объекта. Эта мера моделируется с помощью компьютера.


Исходый объект

Гармоническая мера

Существует проблема выбора траектории движения частиц. При разных траекториях мера может получиться разной. Так, если траектория будет изломана определенным образом, то у частиц будет больше шансов достичь малодоступные участки фрактала.

Физический смысл фрактальных величин


Для физических процессов зачастую важны такие показатели, как площадь взаимодействия. Например, при горении бензиновой смеси в двигателе внутреннего сгорания смесь поступяющая в двигатель представлена в виде набора капелек и струек безнзина разной величины.

Большинсто описаний используют усредненное описание смеси. Скажем соотношение обема топлива к объему цилиндра ничего не говорит о пространственном распределении смеси. Она может быть одиникова как для пара, так и для небольшой лужицы бензина, находящейся на дне цилиндра. То есть информация об площади взаимодействия смеси с возухом напрямую не используется.

С другой стороны, стоит вопрос какова же эта площадь, если распределение напоминает собой стохастический фрактал? Величина площади, как таковая не существует, так как она сильно зависит от точности измерения, как в случае береговой линии. Вместо площади можно измерить различные фрактальные величины. Экспериментально можно выяснить для какой размерности эффективность горения смеси максимальна. И исходя из этого строить теорию, которая будет обладать предсказатеьлной силой.

Подобные рассуждения могут возникнуть при исследовании искрового заряда. На момент описания реферата почти все подходы к описанию разряда носят интегральный, усредняющий характер. Искровые разряды зачастую изломаны и ветвятся. Если какие-то параметры зависят от длины искры или молнии, то они могут быть вычислены через фрактальные характеристики форм каналов. На момент написания реферата подобных данных не было представлено в литературе.

Литература
HAHN H. The crisis in intuition. The world of mathematics, Newman, Vol. III. New York; Simon & Schuster, 1956-1976. (Перевод с немецкого)

GARDNER, M. In which «monster» curves force redefinition of the word «curve». Scientific American. 1976, 235 (выпуск за декабрь), 124-133.

Полани М. Личностное знание М. 1985

Метафизика Фрактала М 1996

Циллис К. Об измерении фрактальных размерностей по физи­ческим свойствам. // В сб. статей «Фракталы в физике». - М.: Мир, 1988.

Р.М Кроновер. Фракталы и хаос в динамических системах. М.2000

С.В.Божокин, Д.А.Паршин Фракталы и мультифракталы. М.2001

Е.Федер. Фраталы. М.1991

Электронная сетевая энциклопедия «Википедия». http://ru.wikipedia.org

Б.Мадельброт Фрактальная геометрия природы. М. 2002

R.F. Voss, Random Fractals: Characterization and Measurement, Scaling Phenomena is Disordered Systems, Plenum Press, New York 1985.

Topological properties of percolation clusters S. Havlin, R. Nossal

Понятия «фрактал» и «фрактальная геометрия» возникли в 70-80-х годах прошлого века. Они прочно вошли в обиход математиков и программистов. Слово «фрактал» происходит от латинского fractus, что в переводе означает дробный, состоящий из фрагментов. Оно было предложено американским математиком Бенуа Мандельбротом в 1975 году для обозначения нерегулярных («изломанных») самоподобных структур, которыми он занимался.

По определению, данному Мандельбротом, «фракталом называется структура, состоящая из частей, которые в каком-то смысле подобны целому» . Фрактал - это бесконечно самоподобная геометрическая фигура, каждый фрагмент которой повторяется при уменьшении масштаба (см. рис. 6). Масштабная инвариантость, наблюдаемая во фракталах, может быть либо точной, либо приближённой.

Рисунок 6. Самоподобие фракталов на примере множества Мандельброта

С математической точки зрения фрактал - это, прежде всего, множество дробной размерности .

Рождение фрактальной геометрии принято связывать с выходом в 1977 году книги Мандельброта «Фрактальная геометрия природы», в которой автор собрал и систематизировал научные результаты ученых, работавших в период 1875-1925 гг. в той же области (Пуанкаре, Фату, Жюлиа, Кантор, Хаусдорф).

Фрактальная геометрия -- это революция в математике и математическом описании природы. Вот как об этом пишет сам первооткрыватель фрактальной геометрии Б.Мандельброт: «Почему геометрию часто называют холодной и сухой? Одна из причин заключается в ее неспособности описать форму облака, горы, дерева или берега моря. Облака -- это не сферы, горы -- это не конусы, линии берега -- это не окружности, и кора не является гладкой, и молния не распространяется по прямой. Природа демонстрирует нам не просто более высокую степень, а совсем другой уровень сложности» .

Мандельброт показал, что геометрия реального мира не евклидова, а фрактальная. «Правильные» евклидовы объекты являются математической абстракцией, природа же предпочитает негладкие, шероховатые, зазубренные формы. К евклидовой геометрии добавилась новая геометрия, отличие которой состоит в том, что она не оперирует гладкими объектами и привычными формами типа треугольника, квадрата, круга, шара и т.п. Фракталы с большой точностью описывают многие физические явления и природные образования. Снежинку, морского конька, ветви деревьев, разряд молнии и горные массивы можно нарисовать, используя фракталы. Поэтому многие современные ученые говорят о том, что природа имеет свойство фрактальности.

Фрактальная размерность

Главная особенность фрактальных объектов состоит в том, что для их описания недостаточно «стандартной» топологической размерности (для пространства, для поверхности - , для линии - , для точки), которая, как известно, всегда является целым числом. Под размерностью понимали минимальное число параметров, необходимых для описания положения точки в пространстве. Несостоятельность такого наивного восприятия стала очевидной после открытия взаимно однозначного соответствия между точками отрезка и квадрата и непрерывного отображения отрезка на квадрат (см. рис. 7). Первое из них было построено Кантором (1877 г.), второе -- Пеано (1890 г.).

Рисунок 7. Построение линии Пеано

Фракталам свойственна геометрическая «изрезанность». Поэтому используется специальное понятие фрактальной размерности, введенное Ф. Хаусдорфом и А.С. Безиковичем. Применительно к идеальным объектам классической евклидовой геометрии она давала те же численные значения, что и топологическая размерность, однако новая размерность обладала более тонкой чувствительностью ко всякого рода несовершенствам реальных объектов, позволяя различать и индивидуализировать то, что прежде было безлико и неразличимо. Этот тонкий инструмент позволяет сделать заключение, к какому обычному геометрическому объекту -- точке, линии или плоскости - ближе конкретное экзотическое фрактальное множество.

Мандельброт дал строгое математическое определение фрактала, как множества, хаусдорфова размерность которого, строго больше его топологической размерности. В то время как гладкая евклидова линия заполняет в точности одномерное пространство, фрактальная кривая вторгается в двумерное пространство, потому как ее размерность находится между 1 и 2. Фракталы - бесконечно-изломанные, «махровые» линии. Они напоминают гармошку, каждый кусочек которой, даже очень маленький, если попытаться его распрямить, оказывается бесконечно длинным.

Обсудим фрактальную размерность на примере регулярных фракталов (математическая абстракция). Рассмотрим сначала отрезок единичной длины, который разбит на равных кусков длиной, так что. По мере уменьшения значение растёт линейно, что и следовало ожидать для одномерной кривой. Аналогично, если мы разделим квадрат единичной площади на равных квадратиков со стороной, то получим - ожидаемый для двумерного объекта результат. Можно утверждать, что в общем случае, где - размерность объекта (см. рис. 8).

Рисунок 8. Покрытие объекта n-мерными кубиками

Следовательно, логарифмируя обе части этого равенства и перейдя к пределу при стремящемся к нулю, можно выразить размерность в виде:

Это равенство является определением хаусдорфовой или фрактальной размерности, которая обычно принимает дробные значения.

Приведем пример множества, состоящего из отдельных точек, но имеющих их столько, сколько и любой отрезок действительной оси. Возьмем отрезок длины 1. Разделив его на три равные части, исключим среднюю часть. С оставшимися двумя отрезками проделаем ту же процедуру и в результате получим 4 отрезка в 1/9 длины каждый и т.д. до бесконечности -- рис. 9.

Рисунок 9. Построение множества Кантора

Множество точек, возникшее после этой процедуры, и является множеством Кантора. Нетрудно заметить, что длина этого множества равна нулю. Действительно,

Найдем теперь его хаусдорфову или фрактальную размерность. Для этого выберем в качестве «эталона» отрезок длиной

Минимальное число таких отрезков, необходимых для покрытия множества, равно

Поэтому его фрактальная размерность

Также, размерность можно определить, исходя из зависимости изменения размеров той части пространства, которую занимает объект, от изменения его линейных размеров :

Для линии. Для плоскости. Для объема.

Проделаем такой эксперимент: возьмем равносторонний треугольник и будем последовательно заменять каждую линию, составляющую его, на четыре других, как это показано на рисунке 10.

Рисунок 10. Построение снежинки Кох

Повторяя эту операцию достаточно долго, мы получим некий объект, напоминающий своим внешним видом снежинку (называется - снежинка Кох), причем с каждым шагом длина кривой, ограничивающей площадь снежинки, увеличивается на одну треть. Ее размерность будет равна, так как при каждом увеличении снежинки в три раза длина кривой увеличивается в четыре. Если устремить число итераций к бесконечности, получится объект, конечная площадь которого ограничивается бесконечной кривой.

Довольно часто приходится слышать разговоры о связи между различными валютами на рынке Форекс.

Основное обсуждение при этом обычно сводится к фундаментальным факторам, практическому опыту или просто домыслам, обусловленными личными стереотипами говорящего. Как крайний случай, выступает гипотеза одной или нескольких «мировых» валют, которые «тянут» за собой все остальные.

Действительно, какова связь между различными котировками? Движутся ли они согласованно или информация о направлении движения одной валюты ничего не скажет о движении другой? В этой статье предпринята попытка разобраться в этом вопросе, используя методы нелинейной динамики и фрактальной геометрии.

1. Теоретическая часть

1.1. Зависимые и независимые переменные

Рассмотрим две переменные (котировки) x и y. В любой момент времени, мгновенные значения этих переменных определяют точку на плоскости XY (рис. 1). Движение точки с течением времени образует траекторию. Форма и тип этой траектории будут определяться типом связи между переменными.

Например, если переменная x никак не связана с переменной y, то мы не увидим никакой регулярной структуры: при достаточном количестве точек, они равномерно заполнят плоскость XY (рис.2).

Если же зависимость между x и y существует, то будет видна некоторая регулярная структура: в простейшем случае это будет кривая (рис. 3),

Рисунок 3. Наличие корреляций - кривая

хотя может быть и более сложная структура (рис. 4).


То же самое характерно для трех- и более -мерного пространства: если между всеми переменными есть связь или зависимость, то точки будут образовывать кривую (рис. 5), если в наборе присутствуют две независимые переменные, то точки образуют поверхность (рис. 6), если три - то точки заполнят трехмерное пространство и т.д.


Если связи между переменными нет, то точки равномерно распределятся по всем доступным измерениям (рис. 7). Таким образом, мы можем судить о характере связи между переменными, определяя, каким образом точки заполняют пространство.

Причем форма получившейся структуры (линии, поверхности, объемной фигуры и т.д.), в данном случае, не имеет значения.

Важна фрактальная размерность этой структуры: линия имеет размерность равную 1, поверхность - 2, объемная структура - 3 и т.д. Обычно можно считать, что значение фрактальной размерности соответствует количеству независимых переменных в наборе данных.

Также мы можем встретиться с дробной размерностью, например, 1.61 или 2.68. Такое может произойти, если получившаяся структура окажется фракталом - самоподобным множеством с нецелой размерностью. Пример фрактала приведен на рисунке 8, его размерность приблизительно равна 1.89, т.е. это уже не линия (размерность равна 1), но еще не поверхность (размерность равна 2).

Фрактальная размерность может быть разной для одного и того же множества на разных масштабах.

Например, если смотреть на множество, изображенное на рисунке 9 «издалека», то ясно видно, что это линия, т.е. фрактальная размерность этого множества равна единице. Если же посмотреть на это же множество «вблизи», то увидим что это совсем не линия, а «расплывчатая труба» - точки не образуют четкую линию, но случайным образом собраны вокруг нее. Фрактальная размерность этой «трубы» должна быть равна размерности пространства, в котором мы рассматриваем нашу структуру, т.к. точки в «трубе» равномерно заполнят все доступные измерения.

Увеличение фрактальной размерности на малых масштабах дает возможность определить размер, при котором связи между переменными становится неразличимы из-за присутствующего в системе случайного шума.

Рисунок 9. Пример фрактальной "трубы"

1.2. Определение фрактальной размерности

Для определения фрактальной размерности можно использовать box-counting алгоритм, основанный на исследовании зависимости количества кубиков, содержащих точки множества, от размера ребра кубика (здесь имеются ввиду не обязательно трехмерные кубики: в одномерном пространстве «кубиком» будет отрезок, в двумерном - квадрат и т.д.).

Теоретически, эта зависимость имеет вид N(ε)~1/ε D , где D – фрактальная размерность множества, ε - размер ребра кубика, N(ε) – количество кубиков, содержащих точки множества при размере кубика ε. Это позволяет определить фрактальную размерность

Не вдаваясь в детали алгоритма, его работу можно описать следующим образом:

    Исследуемое множество точек разбивается на кубики размера ε и считается количество кубиков N, содержащих хотя бы одну точку множества.

    Для разных ε определяется соответствующее значение N, т.е. накапливаются данные для построения зависимости N(ε).

    Зависимость N(ε) строится в двойных логарифмических координатах и определяется угол ее наклона, который и будет значением фрактальной размерности.

Например, на рисунке 10 изображены два множества: плоская фигура (а) и линия (б). Ячейки содержащие точки множества окрашены серым цветом. Подсчитывая, количество «серых» ячеек при разных размерах ячеек, получаем зависимости изображенные на рисунке 11. Определяя наклон прямых, аппроксимирующих эти зависимости, находим фрактальные размерности: Dа≈2,Dб≈1.


На практике для определения фрактальной размерности обычно используют не box-counting, а алгоритм Грассберга-Прокаччиа, т.к. он дает более точные результаты в пространствах высокой размерности. Идея алгоритма заключается в получении зависимости С(ε) - вероятности попадания двух точек множества в ячейку размера ε от размера ячейки и определении наклона линейного участка этой зависимости.

К сожалению, рассмотрение всех аспектов определения размерности невозможно в рамках данной статьи. При желании, вы сможете найти необходимую информацию в специальной литературе.


1.3. Пример определения фрактальной размерности

Чтобы убедится в работоспособности предложенной методики, попробуем определить уровень шума и количество независимых переменных для множества изображенного на рисунке 9. Это трехмерное множество состоит из 3000 точек и представляет из себя линию (одна независимая переменная) с наложенным на нее шумом. Шум имеет нормальное распределение при СКО равном 0.01.

На рисунке 12 показана зависимость С(ε) в логарифмическом масштабе. На ней мы видим два линейных участка, пересекающихся при ε≈2 -4.6 ≈0.04. Наклон первой прямой ≈2.6, а второй ≈1.0.

Полученные результаты означают, что тестовое множество имеет одну независимую переменную на масштабе большем 0.0 и «почти три» независимые переменные или наложенный шум на масштабе меньшем 0.04. Это хорошо согласуется с исходными данными: согласно правилу «трех сигм», 99.7% точек образуют «трубу» диаметром 2*3*0.01≈0.06.


Рисунок 12. Зависимость C(e) в логарифмическом масштабе

2. Практическая часть

2.1. Исходные данные

Для изучения фрактальных свойств рынка Форекс, были использованы общедоступные данные, охватывающие период с 2000 по 2009 год включительно. Исследование проводилось на ценах закрытия семи основных валютных пар: EURUSD, USDJPY, GBPUSD, AUDUSD, USDCHF, USDCAD, NZDUSD.

2.2. Реализация

Алгоритмы определения фрактальной размерности реализованы в виде функций среды MATLAB на базе разработок профессора Майкла Смолла (Dr Michael Small ). Функции с примерами использования доступны в архиве frac.rar приложенном к данной статье.

Для ускорения вычислений, наиболее трудоемкий этап выполнен на языке Си. Перед началом использования, вам необходимо скомпилировать Си-функцию "interbin.c" с помощью команды MATLAB "mex interbin.c".

2.3. Результаты исследования

На рисунке 13 показано совместное движение котировок EURUSD и GBPUSD с 2000 по 2010 год. Сами значения котировок показаны на рисунках 14 и 15.


Фрактальная размерность множества, изображенного на рисунке 13, приблизительно равна 1.7 (рис. 16). Это означает, что движение EURUSD + GBPUSD не образует «чистого» случайного блуждания, иначе размерность была бы равна 2 (размерность случайного блуждания, в двух- и более мерных пространствах всегда равна 2).

Тем не менее, так как движение котировок очень похоже на случайное блуждание, то мы не можем изучать непосредственно сами значения котировок - при добавлении новых валютных пар, фрактальная размерность изменяется незначительно (табл. 1) и никаких выводов сделать не удастся.

Таблица 1. Изменение размерности при увеличении числа валют

Чтобы получить более интересные результаты, следует перейти от самих котировок, к их изменениям.

В таблице 2 приведены значения размерности для разных интервалов приращений и разного количества валютных пар.

Даты
Количество точек
EURUSD
GBPUSD
+USDJPY
+AUDUSD
+USDCHF
+USDCAD
+NZDUSD
M5
14 Aug 2008 - 31 Dec 2009
100000
1.9
2.8
3.7
4.4
5.3
6.2
M15
18 Nov 2005 - 31 Dec 2009
100000
2
2.8
3.7
4.5
5.9
6.7
M30
16 Nov 2001 - 31 Dec 2009
100000
2
2.8
3.7
4.5
5.7
6.8
H1
03 Jan 2000 - 31 Dec 2009
61765
2
2.9
3.8
4.6
5.6
6.5
H4
03 Jan 2000 - 31 Dec 2009
15558
2
3
4
4.8
5.9
6.3
D1
03 Jan 2000 - 31 Dec 2009
2601
2
3
4
5.1
5.7
6.5

Таблица 2. Изменение размерности при разных интервалах приращений

Если валюты связаны между собой, то при добавлении каждой новой валютной пары, фрактальная размерность должна увеличиваться все меньше и меньше и, в итоге, должна сойтись к некоторому значению, которое покажет количество «свободных переменных» на валютном рынке.

Также, если предположить, что на котировки накладывается «рыночный шум», то на малых интервалах (М5, М15, М30) возможно заполнение всех доступных измерений шумом и этот эффект должен ослабевать на больших таймфреймах «обнажая» зависимости между котировками (аналогично как в тестовом примере).

Как видно из таблицы 2, эта гипотеза не нашла подтверждения на реальных данных: на всех таймфремах множество заполняет все доступные измерения, т.е. все валюты независимы друг от друга.

Это несколько противоречит интуитивным убеждениям о связи валют. Кажется, что близкие валюты, например GBP и CHF или AUD и NZD должны показывать схожую динамику. Например, на рисунке 17 показаны зависимости приращений NZDUSD от AUDUSD для пятиминутных (коэффициент корреляции 0.54) и дневных (коэффициент корреляции 0.84) интервалов.

Рисунок 17. Зависимости приращений NZDUSD от AUDUSD для M5 (0.54) и D1 (0.84) интервалов


Из этого рисунка видно, что при увеличении интервала, зависимость все больше вытягивается по диагонали и коэффициент корреляции увеличивается. Но, с «точки зрения» фрактальной размерности, уровень шума слишком высок, чтобы считать эту зависимость одномерной линией. Возможно, на более длительных интервалах (недели, месяцы) фрактальные размерности сойдутся к некоторому значению, но у нас нет возможности это проверить - слишком мало точек для определения размерности.

Заключение

Конечно, интереснее было бы свести движение валют к одной или нескольким независимым переменным - это серьёзно бы упростило задачу восстановления рыночного аттрактора и прогнозирования котировок. Но рынок показывает другой результат: зависимости слабо выражены и «хорошо спрятаны» в большом количестве шума. В этом плане, рынок очень эффективен.

Методы нелинейной динамики, стабильно показывающие хороший результат в других областях: медицине, физике, химии, биологии и пр, при анализе рыночных котировок требуют особого внимания и аккуратной интерпретации результатов.

Полученные результаты, не позволяют однозначно утверждать о наличии или отсутствии связи между валютами. Можно лишь сказать, что на рассматриваемых таймфреймах уровень шума сопоставим с «силой» связи, поэтому вопрос о связи между валютами остается открытым.

Свойства фракталов

Фрактальные свойства - не блажь и не плод досужей фантазии математиков. Изучая их, мы учимся различать и предсказывать важные особенности окружающих нас предметов и явлений, которые прежде, если и не игнорировались полностью, то оценивались лишь приблизительно, качественно, на глаз. Например, сравнивая фрактальные размерности сложных сигналов, энцефалограмм или шумов в сердце, медики могут диагностировать некоторые тяжелые заболевания на ранней стадии, когда больному еще можно помочь. Также и аналитик, сравнивая предыдущее поведение цен, в начале зарождения модели может предвидеть дальнейшее ее развитие, тем самым, не допуская грубых ошибок в прогнозировании.

Нерегулярность фракталов

Первым свойством фракталов является их нерегулярность. Если фрактал описывать функцией, то свойство нерегулярности в математических терминах будет означать, что такая функция не дифференцируема, то есть не гладкая ни в какой точке. Собственно к рынку это имеет самое прямое отношение. Колебания цен порой так волатильны и изменчивы, что это приводит многих трейдеров в замешательство. Нашей с вами задачей стоит разобрать весь этот хаос и привести его к порядку.

Самоподобие фракталов

Второе свойство гласит, что фрактал - это объект обладающий свойством самоподобия. Это рекурсивная модель, каждая часть которой повторяет в своем развитии развитие всей модели в целом и воспроизводится в различных масштабах без видимых изменений. Однако, изменения все же происходят, что в значительной степени может повлиять на восприятие нами объекта.

Самоподобие означает, что у объекта нет характерного масштаба: будь у него такой масштаб, вы сразу бы отличили увеличенную копию фрагмента от исходного снимка. Самоподобные объекты обладают бесконечно многими масштабами на все вкусы. Суть самоподобия можно пояснить на следующем примере. Представьте себе, что перед вами снимок «настоящей» геометрической прямой, «длины без ширины», как определял линию Евклид, и вы забавляетесь с приятелем, пытаясь угадать, предъявляет ли он вам исходный снимок (оригинал) или увеличенный в нужное число раз снимок любого фрагмента прямой. Как бы ни старались, вам ни за что не удастся отличить оригинал от увеличенной копии фрагмента, прямая во всех своих частях устроена одинаково, она подобна самой себе, но это ее замечательное свойство несколько скрадывается незамысловатой структурой самой прямой, ее «прямолинейностью» (рис.35).

Рис. 35

Если вы точно так же не сможете отличить снимок какого-нибудь объекта от надлежащим образом увеличенного снимка любого его фрагмента, то перед вами - самоподобный объект. Все фракталы, обладающие хотя бы какой-нибудь симметрией, самоподобны. А это значит, что некоторые фрагменты их структуры строго повторяются через определенные пространственные промежутки. Очевидно, что эти объекты могут иметь любую природу, причем их вид и форма остаются неизменными независимо от масштаба. Пример самоподобного фрактала:

Рис. 36

В финансах эта концепция - не беспочвенная абстракция, а теоретическая переформулировка практичной рыночной поговорки - а именно, что движения акции или валюты внешне похожи, независимо от масштаба времени и цены. Наблюдатель не может сказать по внешнему виду графика, относятся ли данные к недельным, дневным или же часовым изменениям.

Разумеется, далеко не все фракталы обладают столь правильной, бесконечно повторяющейся структурой, как те замечательные экспонаты будущего музея фрактального искусства, которые рождены фантазией математиков и художников. Многие фракталы, встречающиеся в природе (поверхности разлома горных пород и металлов, облака, валютные котировки, турбулентные потоки, пена, гели, контуры частиц сажи и т. д.), лишены геометрического подобия, но упорно воспроизводят в каждом фрагменте статистические свойства целого. Фракталы с нелинейной формой развития были названы Мандельбротом как - мультифракталы. Мультифрактал - это квазифрактальный объект с переменной фрактальной размерностью. Естественно, что реальные объекты и процессы гораздо лучше описываются мультифракталами.

Такое статистическое самоподобие, или самоподобие в среднем, выделяет фракталы среди множества природных объектов.

Рассмотрим пример самоподобия на валютном рынке:




Рис. 37

На этих рисунках мы видим что они похожи, при этом имея разный масштаб времени, на рис а минутный масштаб, на рис.б недельный масштаб цен. Как видим, данные котировки не обладают свойством идеально повторять друга, однако мы можем считать их подобными.

Даже простейшие из фракталов - геометрически самоподобные фракталы - обладают непривычными свойствами. Например, снежинка фон Коха обладает периметром бесконечной длины, хотя ограничивает конечную площадь (рис.38). Кроме того, она такая колючая, что ни в одной точке контура к ней нельзя провести касательную (математик сказал бы, что снежинка фон Коха нигде не дифференцируема, то есть не гладкая ни в какой точке).


Рис. 38

Мандельброт обнаружил, что результаты фракционного измерения остаются постоянными для различных степеней усиления неправильности объекта. Другими словами, существует регулярность (правильность, упорядоченность) для любой нерегулярности. Когда мы относимся к чему - либо, как к возникающему случайным образом, то это указывает на то, что мы не понимаем природу этой хаотичности. В терминах рынка это означает, что формирование одних и тех же типичных формаций должны происходить в различных временных рамках. Одноминутный график будет описывать фрактальную формацию так же, как и месячный. Такое «само - уподобление», находимое на графиках товарных и финансовых рынков, показывает все признаки того, что действия рынка ближе к парадигме поведения «природы», нежели поведения экономического, фундаментального анализа.

Рис. 39

На данных рисунках можно найти подтверждение выше сказанному. Слева изображен график с минутным масштабом, справа недельный. Здесь изображены валютные пары Доллар/Йена (рис.39(а)) и Евро/Доллар (рис.39(б)) с различными масштабами цен. Даже не смотря на то, что валютная пара JPY/USD имеет другую волатильноеть по отношению к EUR/USD мы можем наблюдать одну и ту же структуру движения цены.

Фрактальная размерность

Третьим свойством фракталов является то, что фрактальные объекты имеют размерность, отличную от евклидовой (иначе говоря топологическая размерность). Фрактальная размерность, является показателем сложности кривой. Анализируя чередование участков с различной фрактальной размерностью и тем, как на систему воздействуют внешние и внутренние факторы, можно научиться предсказывать поведение системы. И что самое главное, диагностировать и предсказывать нестабильные состояния.

В арсенале современной математики Мандельброт нашел удобную количественную меру неидеальности объектов - извилистости контура, морщинистости поверхности, трещиноватости и пористости объема. Ее предложили два математика - Феликс Хаусдорф (1868- 1942) и Абрам Самойлович Безикович (1891-1970). Ныне она заслуженно носит славные имена своих создателей (размерность Хаусдорфа - Безиковича) - размерность Хаусдорфа - Безиковича. Что такое размерность и для чего она нам понадобится применительно к анализу финансовых рынков? До этого нам был известен только один вид размерности - топологическая (рис.41). Само слово размерность показывает, сколько измерений имеет объект. Для отрезка, прямой линии она равна 1, т.е мы имеем только одно измерение, а именно длину отрезка либо прямой. Для плоскости размерность будет 2, так как мы имеем двухмерное измерение, длина и ширина. Для пространства или объемных объектов, размерность равна 3: длина, ширина и высота.

Давайте рассмотрим пример с компьютерными играми. Если игра сделана в 3D графике, то она пространственна и объемна, если в 2D графике - графика изображается на плоскости, (рис. 40).


Рис. 40


Рис. 41

Самое необычное (правильнее было бы сказать - непривычное) в размерности Хаусдорфа - Безиковича было то, что она могла принимать не только целые, как топологическая размерность, но и дробные значения. Равная единице для прямой (бесконечной, полубесконечной или для конечного отрезка), размерность Хаусдорфа - Безиковича увеличивается по мере возрастания извилистости, тогда как топологическая размерность упорно игнорирует все изменения, происходящие с линией.

Размерность характеризует усложнение множества (например прямой). Если это кривая, с топологической размерностью равной 1 (прямая линия), то кривую можно усложнить путем бесконечного числа изгибаний и ветвлений до такой степени, что ее фрактальная размерность приблизится к двум, т.е заполнит почти всю плоскость. (рис.42)

Рис. 42

Увеличивая свое значение, размерность Хаусдорфа - Безиковича не меняет его скачком, как сделала бы «на ее месте» топологическая размерность, переход с 1 сразу к 2. Размерность Хаусдорфа - Безиковича - и это на первый взгляд может показаться непривычным и удивительным, принимает дробные значения: равная единице для прямой, она становится равной 1,15 для слегка извилистой линии, 1,2 - для более извилистой, 1,5 - для очень извилистой и т. д.


Рис. 43

Именно для того чтобы особо подчеркнуть способность размерности Хаусдорфа - Безиковича принимать дробные, нецелые, значения, Мандельброт и придумал свой неологизм, назвав ее фрактальной размерностью. Итак, фрактальная размерность (не только Хаусдорфа - Безиковича, но и любая другая) - это размерность, способная принимать не обязательно целые значения, но и дробные .

Для линейных геометрических фракталов, размерность характеризует их самоподобность. Рассмотрим рис.48 (А), линия состоит из N=4 отрезков, каждый из которых имеет длину r =1/3. В итоге получаем соотношение:

D = logN/log(l/r)

Совсем дело обстоит иначе, когда мы говорим мультифракталах (нелинейных). Здесь размерность утрачивает свой смысл как определение подобия объекта и определяется посредством различных обобщений, куда менее естественных, чем уникальная размерность самоподобных объектов.

На валютном рынке размерностью можно охарактеризовать волатильность котировок цены. Для каждой валютной пары характерно свое поведение в масштабе цен. У пары Фунт/Доллар (рис.44(а)) оно более спокойно, нежели чем у Евро/Доллар (рис. 44(б)). Самое интересное в том, что данные валюты двигаются одинаковой структурой к ценовым уровням, однако, размерность у них разная, что может сказаться на внутредневнои торговле и на ускользающих от не опытного взгляда, изменениях моделей.

Рис. 44

На рис. 45 показана размерность применительно к математической модели, для того чтобы вы более глубже прониклись в значение данного термина. Обратите внимание, что на всех трех рисунках изображен один цикл. На рис.а размерность равна 1.2, на рис.б размерность равна 1.5, а на рис.в 1.9. Видно, что с увеличением размерности восприятие объекта усложняется, возрастает амплитуда колебаний.


Рис. 45

На финансовых рынках размерность находит свое отражение не только в качестве волатильности цены, но и в качестве детализации циклов (волн). Благодаря ей, мы сможем различать принадлежность волны к определенному масштабу времени. На рис.46 изображена пара Евро/Доллар в дневном масштабе цен. Обратите внимание, четко видно сформировавшийся цикл и начало нового, большего цикла. Перейдя на часовой масштаб и увеличив один из циклов, мы сможем заметить более мелкие циклы, и часть крупного, расположенного на Dl(pHC.16). Детализация циклов, т.е их размерность, позволяет нам определить по начальным условиям, как может в дальнейшем развиваться ситуация. Мы можем сказать, что: фрактальная размерность отражает свойство масштабной инвариантности рассматриваемого множества .

Понятие инвариантности было введено Мандельбротом от слова «sealant» масштабируемый, т.е когда объект обладает свойством инвариантности, он имеет различные масштабы отображения.


Рис. 46


Рис. 47

На рис.47 кругом А выделен мини цикл (детализированная волна), кругом Б - волна большего цикла. Именно из-за размерности, мы не всегда можем определять ВСЕ циклы на одном масштабе цен.

О проблемах определения и свойствах развития непериодических циклов мы поговорим в разделе «Циклы на валютном рынке», сейчас для нас главное было понять, как и где размерность проявляется на финансовых рынках.

Таким образом, можно сказать, что фракталы как модели применяются в том случае, когда реальный объект нельзя представить в виде классических моделей. А это значит, что мы имеем дело с нелинейными связями и недетерминированной (случайной) природой данных. Нелинейность в мировоззренческом смысле означает многовариантность путей развития, наличие выбора из альтернативных путей и определенного темпа эволюции, а также необратимость эволюционных процессов. Нелинейность в математическом смысле означает, определенный вид математических уравнений (нелинейные дифференциальные уравнения), содержащих искомые величины в степенях, больше единицы или коэффициенты, зависящие от свойств среды. Простой пример нелинейной динамической системы:

Джонни растет на 2 дюйма в год . Эта система объясняет, как высота Джонни изменяется во времени. Пусть х(n) будет ростом Джонни в этом году. Пусть его рост в следующем году будет записан, как х(n+1). Тогда мы можем написать динамическую систему в форме уравнения:

х(n+1) = х(n)+2

Видите? Разве это не простая математика? Если мы введем сегодняшний рост Джонни х(n) = 38 дюймов, то с правой стороны уравнения мы получим рост Джонни в следующем году, х(n+1) = 40 дюймов:

х(n+1) = х(n) + 2 = 38 + 2 = 40.

Движение справа налево в уравнении называется итерацией (повторением). Мы можем повторить уравнение снова, введя новый рост Джонни 40 дюймов в нужную сторону уравнения (то есть х(n) = 40), и мы получим х(n+1) = 42. Если мы итерируем (повторим) уравнение 3 раза, мы получим рост Джонни через 3 года, а именно 44 дюйма, начав с роста 38 дюймов.

Это - детерминированная динамическая система. Если мы хотим сделать ее недетерминированной (стохастической) , мы могли бы сделать такую модель: Джонни растет на 2 дюйма в год, больше или меньше и записать уравнение, как:

х(n+1) = х(n) + 2 + е

где е - небольшая ошибка (небольшая относительно 2), представляет некоторое вероятностное распределение.

Давайте вернемся к первоначальному детерминированному уравнению. Первоначальное уравнение, х(n+1) = х(n) + 2, является линейным. Линейное означает, что Вы добавляете переменные или константы или умножаете переменные на константы. Например, уравнение

z(n+l) = z(n) + 5 y(n) -2 x(n)

является линейным. Но если Вы перемножите переменные, или возведете их в степень, большую единицы, уравнение (система) станет нелинейным. Например, уравнение

х(n+1) = х(n)2

является нелинейным, потому что х(n) - возведено в квадрат. Уравнение

является нелинейным, потому что две переменные, х и у, перемножены.

Когда мы применяем классические модели (например, трендовые, регрессионные и т. д.), мы говорим, что будущее объекта однозначно детерминированное, т.е полностью зависит от начальных условий и поддается четкому прогнозу. Вы самостоятельно можете выполнить одну из таких моделей в Excel. Пример классической модели можно представить в виде постоянно убывающей, либо возрастающей тенденции. И мы можем предсказать ее поведение, зная прошлое объекта(исходные данные для моделирования). А фракталы применяются в том случае, когда объект имеет несколько вариантов развития и состояние системы определяется положением, в котором она находится на данный момент. То есть мы пытаемся смоделировать хаотичное развитие. Именно такой системой и является межбанковский валютный рынок.

Давайте теперь рассмотрим, как из прямой можно получить то, что мы называем фракталом, с присущими ему свойствами.

На рис.48 (А) изображена кривая Коха. Возьмем отрезок линии, ее длина = 1, т.е пока еще топологическая размерность. Теперь мы разделим ее на три части (каждая по 1/3 длины), и удалим среднюю треть. Но мы заменим среднюю треть двумя отрезками (каждый по 1/3 длины), которые можно представить, как две стороны равностороннего треугольника. Это стадия два (b) конструкции изображена на рис.48 (А). В этой точке мы имеем 4 меньших доли, каждая по 1/3 длины, так что вся длина - 4(1/3) = 4/3. Затем мы повторяем этот процесс для каждой из 4 меньших долей линии. Это - стадия три (с) . Это даст нам 16 еще меньших долей линии, каждая по 1/9 длины. Так что вся длина теперь 16/9 или (4/3)2. В итоге получили дробную размерность. Но не только это отличает образовавшуюся структуру от прямой. Она стала самоподобной и ни в одной ее точке невозможно провести касательную (рис.48 (Б))


Рис. 48

Применение фракталов на рынке

Учитывая все выше сказанное о фракталах и их свойствах, мы, работая с нелинейной системой финансовых данных, можем применить их в своей повседневной торговле. И так давайте рассмотрим основные преимущества фракталов на валютном рынке:

1. Применение фракталов позволит мгновенно запоминать практически всю историю котировок валютной пары. Когда вы будете запоминать большое количество ценовых данных, то начнете лучше чувствовать торговлю. Вы будете узнавать модели, о существовании которых и не представляли.

Почему именно применение фракталов дает вам это? Потому что применяя их, вы приводите хаос в порядок, а когда система упорядочивается у вас в голове, вы без труда сможете отыскать нужный вам элемент на рынке, это достигается с помощью специальных упражнений, которые будут описаны в конце данного курса.

2. Вы сможете анализировать десятки пар, поскольку теперь это вам не составит труда. Применение свойств фракталов, позволит вам с одного взгляда определить и сориентироваться на рынке.

3. Применяя теорию фракталов можно не пользоваться другими методами анализа и сделать ее уникальной в своем роде.

4. У вас поменяется взгляд на ход биржевых котировок. Вы не будете задаваться вопросом где я? У вас все время будут варианты действий.

5. Вы начнете находить на графике ситуации АНАЛОГИЧНЫЕ ходу цены валют в данной момент времени, что позволит вам предотвратить не разумные потери и сделать достоверный прогноз.

6. Теория фракталов это бездна идей и их применения. Применяя их свойства к финансовым данным, вы можете создать свою неповторимую торговую систему, в которой будет сочетание технического и фрактального анализа.

7. Вы по-другому взглянете на влияние новостей на рынок.

8. И что самое главное, теперь у вас всегда будет карта, без которой вы уже не будете себя представлять в бесконечном и манящем мире валют.

Конечно же я перечислил не весь список положительных сторон применения фракталов на рынке, остальные заключения вы уже сделаете самостоятельно изучив данный курс до конца.


(Материалы приведены на основании: А. Алмазов. Фрактальная теория. Как поменять взгляд на рынки)

О фракталах говорят много. В Паутине созданы сотни сайтов, посвящённых фракталам. Но большая часть информации сводится к тому, что фракталы это красиво. Загадочность фракталов объясняют их дробной размерностью, но мало кто понимает, что же такое дробная размерность.

Где-то в 1996 меня заинтересовало, что же такое дробная размерность и каков её смысл. Каково же было моё удивление, когда я узнал, что это не такая уж сложная вещь, и понять её может любой школьник.

Я постараюсь изложить здесь популярно, что же такое дробная размерность. Чтобы компенсировать острый дефицит информации по этой теме.

Измерение тел

Сперва небольшое введение, чтобы привести наши бытовые представления об измерении тел в некоторый порядок.

Не стремясь к математической точности формулировок, давайте разберёмся, что же такое размер, мера и размерность.

Размер объекта можно померить линейкой. В большинстве случаев размер получается малоинформативен. Какая «гора» больше?

Если сравнивать высоты, то больше красная, если ширины - зелёная.

Сравнение размеров может быть информативным если предметы подобны друг другу:

Теперь какие бы размеры мы ни сравнили: ширину, высоту, сторону, периметр, радиус вписанной окружности или любые другие, всегда получится, что зелёная гора больше.

Мера тоже служит для измерения объектов, но она измеряется не линейкой. О том, как именно она измеряется мы ещё поговорим, а пока отметим её главное свойство - мера аддитивна.

Выражаясь на бытовом языке, при слиянии двух объектов, мера суммы объектов равна сумме мер исходных объектов.

Для одномерных объектов мера пропорциональна размеру. Если вы возьмёте отрезки длиной 1см и 3см, «сложите» их вместе, то «суммарный» отрезок будет иметь длину 4см (1+3=4см).

Для не одномерных тел, мера вычисляется по некоторым правилам, которые подбираются так, чтобы мера сохраняла аддитивность. Например, если вы возьмёте квадраты со сторонами 3см и 4см и «сложите» их (сольёте их вместе), то сложатся площади (9+16=25см²), то есть сторона (размер) результата будет 5см.

И слагаемые, и сумма являются квадратами. Они подобны друг другу и мы можем сравнивать их размеры. Оказывается, что размер суммы не равен сумме размеров слагаемых (5≄4+3).

Как же связаны мера и размер?

Размерность

Как раз размерность и позволяет связать меру и размер.

Давайте обозначим размерность - D, меру - M, размер - L. Тогда формула, связывающая эти три величины будет имеют вид:

Для привычных нам мер эта формула приобретает всем знакомые обличия. Для двухмерных тел (D=2) мерой (M) является площадь (S), для трёхмерных тел (D=3) - объём (V):


S = L 2 , V = L 3

Внимательный читатель спросит, по какому праву мы написали знак равенства? Ну хорошо, площадь квадрата равна квадрату его стороны, а площадь круга? Работает ли эта формула для любых объектов?

И да и нет. Вы можете заменить равенства на пропорциональности и ввести коэффициенты, а можете считать, что мы вводим размеры тел именно так, чтобы формула работала. Например для круга мы будем называть размером длину дуги равной корень из «пи» радиан. А почему нет?

В любом случае, наличие или отсутствие коэффициентов не изменит суть дальнейших рассуждений. Для простоты, я не буду вводить коэффициенты; если хотите, вы можете их добавить самостоятельно, повторить все рассуждения и убедиться, что они (рассуждения) не утратили своей справедливости.

Из всего сказанного нам следует сделать один вывод, что если фигуру уменьшить в N раз (отмасштабировать), то она будет укладываться в исходной N D раз.

Действительно, если уменьшить отрезок (D=1) в 5 раз, то он поместится в исходном ровно пять раз (5 1 =5); Если треугольник (D=2) уменьшить в 3 раза, то он уложится в исходном 9 раз (3 2 =9).

Если куб (D=3) уменьшить в 2 раза, то он уложится в исходном 8 раз (2 3 =8).

Верно и обратное: если при уменьшении размера фигуры в N раз, оказалось, что она укладывается в исходной n раз (то есть мера её уменьшилась в n раз), то размерность можно вычислить по формуле.

Русский язык