Скачать функции и их графики ppt. Интерактивная презентация "функции, их свойства и графики". Построение графических образов


Введение. Математика, давно став языком науки и техники, в настоящее время все шире проникает в повседневную жизнь и обиходный язык, все более внедряется в традиционно далекие от нее области. Как образно заметил великий Галилео Галилей (1564 – 1642 гг.), книга природы написана на математическом языке, и ее буквы – математические знаки и геометрические фигуры, без них невозможно понять ее слова, без них тщетно блуждание в бесконечном лабиринте. И именно функция является тем средством математического языка, которое позволяет описывать процессы движения, изменения, присущие природе. Изучая квадратичную функцию в 9 классе, мы выполняли преобразования графика этой функции. В результате этих преобразований построение графика выполнялось легко и просто. И я задумался: «А нельзя ли выполнять аналогичные преобразования с графиками других функций, например линейной функции, обратной пропорциональности, степенной функции?». Поэтому я выбрал тему своей работы «Класс элементарных функций и их графики», поставив перед собой цель: понять и изучить способы образования элементарных функций и преобразования их графиков.


Из истории развития функции. Впервые функция вошла в математику под именем «переменная величина» в знаменитом труде французского математика и философа Р. Декарта «Геометрия», и её появление послужило, по словам Ф. Энгельса, поворотным пунктом в математике, благодаря чему в неё вошли движение, диалектика. Без переменных величин И.Ньютон не смог бы выразить законы динамики, описывающие процессы механического движение тел – небесных и вполне земных, а современные ученые не могли бы рассчитывать траектории движения космических кораблей и решать бесконечное множество технических проблем нашей эпохи.


Из истории развития функции. С развитием науки понятие функции уточнялось и обобщалось. Сейчас оно стало настолько общим, что совпадает с понятием соответствия. Таким образом, функцией в общем понимании называется любой закон (правило), по которому каждому объекту из некоторого класса, области определения функции, поставлен в соответствие некоторый объект из другого (или того же) класса – области возможных значений функции. Но мы не рассматриваем понятие функции в столь общем понимании, а считаем, что как независимая, так и зависимая переменные – это величины. Таким образом функцией называется зависимость, связывающая с каждым значением одной переменной величины (аргумента) из некоторой области ее изменения определенное значение другой величины (функции). Если аргумент обозначить через х, значение функции - через у, а саму зависимость – функцию – символом f, то связь между значениями функции и аргументом так: y=f(x).


Способы задания функций. Существуют три основных способа выражения зависимостей между величинами: табличный, графический и аналитический («формульный»). Табличный способ важен потому, что является основным при обнаружении реальных зависимостей и может оказаться к томуже единственным средством их задания (формулу не всегда удается подобрать, а порой в ней и нет необходимости).К табличному заданию функции часто переходят при выполнении практических расчетов, с ней связанных: например, применение таблиц квадратных корней удобно при проведении расчетов, в которых участвуют такие корни. С математической точке зрения, табличное задание непрерывных зависимостей всегда неполно и дает лишь информацию о значениях функции в отдельных точках.


Способы задания функций Графический способ представления зависимостей также является одним из средств их фиксации при изучении реальных явлений. Это позволяет делать различные «самопишущие» приборы, такие, как сейсмограф, электрокардиограф, осциллограф и т.п., изображающие информацию об изменении измеряемых величин в виде графиков. Но если есть график, то значит, определена и соответствующая ему функция. В таких случаях говорят о графическом задании функции. Однако графический способ задания функции неудобен для расчетов; к тому же, подобно табличному, он является приближенным и неполным. Аналитическое (формульное) задание функции отличается своей компактностью, легко запоминается и содержит в себе полную информацию о зависимости. Функцию можно задать с помощью формулы, например: y=2x+5, S=at2/2, S=vt. Эти формулы можно вывести с помощью геометрических или физических рассуждений. Порой формулы получаются в результате обработки эксперимента, такие формулы называются эмпирическими.


Класс элементарных функции К элементарным функциям относятся практически все функции, встречающиеся в школьном учебнике. Прежде всего, имеется достаточно представительный набор широко известных и хорошо изученных функций, которые называются основными элементарными функциями. Это функции: y=C, называемая константой, y= xа - степенная (при а = 1 получается функция y=x, называемая тождественной). Графики этих функций прилагаются. (приложение 1-7) Имея в распоряжении основные элементарные функции, можно ввести ряд операций, позволяющих комбинировать их между собой как детали для получения более сложных и разнообразных конструкций. Допустимые арифметические действия над функциями. [+] – сложение, [-] – вычитание, [*] – умножение, [:] – деление. Все те функции, которые можно получить из основных элементов с помощью арифметических операций называются элементарными функциями составляют класс элементарных функций.


Образование класса элементарных функций Имея определенный набор базисных функций f1 , f2 ,f3 ,...fk и допустимых операций F1, F2, ... Fs над ними (их разрешается применять любое число раз), мы можем получать другие функции, подобно тому, как из деталей конструктора с помощью определенных правил их соединения можно получить разные модели. Класс всех получаемых таким образом функций обозначается так: < f1,f2,...fk; F1,F2,...Fs>. В частности, если принять за базисные все основные элементарные функции и допустить лишь арифметические операции, то получим класс элементарных функций. Беря в качестве базисных часть основных элементарных функций и допуская, возможно, лишь часть указанных операций, получим некоторые подклассы класса элементарных функций, некоторые семейства функций, порождаемые данным базисом и данными операциями. Вот несколько примеров таких семейств функций, где под (а) понимается операция умножения на любую константу: - семейство целых положительных степеней у=х, где n € N; - семейство линейных функций у= ах+в; - семейство многочленов у= ахn +...+an-1x +an, где n € N.


Построение графиков Для построения графика функции у= 3х2 надо график функции у= х2 умножить на 3. В результате график функции у= х2 растянется в 3 раза вдоль оси ординат, а если у=0,3 х2 , то произойдет сжатие графика в 0,3 раза вдоль оси Оу. (приложение 8, 9).


Построение графиков График функции у=3(х -4)2 можно получить, выполнив следующие действия: - сложить графики тождественной функции у=х и константы у=-4, получим график функции у=х-4; - перемножить графики функций у=х-4 и у=х-4, получим график функции у= (х -4)2 ; - умножить у= (х -4)2 на 3, получим график функции у=3(х -4)2. Или просто график функции у=3х2 сдвинуть по оси Ох на 4 единичных отрезка (Приложение10).


Преобразования исходного графика функции y= f(x). Из вышесказанного можно сделать следующий вывод, что выполняя различные действия с графиками элементарных функций, мы выполняем преобразования этих графиков, а именно: параллельный перенос, симметрию относительно прямой Ох и прямой Оу.

Презентация «Степенные функции, их свойства и графики» - наглядное пособие для проведения школьного урока по данной теме. Изучив особенности и свойства степени с рациональным показателем, можно сделать полный анализ свойств степенной функции и ее поведения на координатной плоскости. В ходе данной презентации рассматривается понятие степенной функции, различные ее виды, поведение графика на координатной плоскости функции с отрицательным, положительным, четным, нечетным показателем, делается анализ свойств графика, описываются примеры решения задач с использованием изученного теоретического материала.



Применяя данную презентацию, учитель имеет возможность повысить эффективность урока. На слайде хорошо видны построения графика, с помощью цветного выделения и анимации выделяются особенности поведения функции, формируя глубокое понимание материала. Яркая, понятная и последовательная подача материала предусматривает лучшее запоминание его.

Демонстрация начинается с изученного на предыдущих занятиях свойства степени с рациональным показателем. Отмечается, что она преобразуется в корень a p/q = q √a p для неотрицательного а и неравного единице q. Напоминается, как это выполняется на примере 1,3 3/7 = 7 √1,3 3 . Далее дается определение степенной функции y=x k , в которой k является рациональным дробным показателем. Определение выделено в рамку для запоминания.

На слайде 3 демонстрируется поведение функции y=x 1 на координатной плоскости. Это функция вида у=х, а графиком является прямая, проходящая через начало координат и расположенная в первой и третьей четверти системы координат. На рисунке демонстрируется изображение графика функции, выделенного красным цветом.




Далее рассматривается степень 2 степенной функции. На слайде 4 представлено изображение графика функции y=x 2 . Школьники уже знакомы с данной функций и ее графиком - параболой. На слайде 5 рассматривается кубическая парабола - график функции y=x 3 . Ее поведение также уже изучено, поэтому ученики могут вспомнить свойства графика. Также рассматривается график функции y=x 6 . Он также представляет собой параболу - ее изображение прилагается к описанию функции. На слайде 7 изображен график функции y=x 7 . Это также кубическая парабола.

Затем описываются свойства функций с отрицательными показателями степени. На слайде 8 описывается вид степенной функции с целым отрицательным показателем y=x -n =1/х n . Примером графика такой функции служит график y=1/х 2 . Он имеет разрыв в точке х=0, состоит из двух частей, расположенных в первой и второй четвертях системы координат, каждая из которых при стремлении к бесконечности прижимается к оси абсцисс. Отмечается, что такое поведение функции характерно для четного n.

На слайде 10 строится график функции y=1/х 3 ., части которого лежат в первой и третьей четвертях. График также разрывается в точке х=0 и имеет асимптоты у=0 и х=0. Отмечается, что такое поведение графика характерно для функции, в которой степень является нечетным числом.




На слайде 11 описано поведение графика функции y=х 0 . Это прямая у=1. Она также демонстрируется на прямоугольной плоскости координат.

Далее анализируется разница между расположением ветви функции y=х n при увеличении показателя степени n. для наглядной демонстрации функциональные зависимости отмечены тем же цветом, что и графики. В результате этого видно, что при увеличении показателя функции ветвь графика сильнее прижимается к оси ординат, график становится более крутым. При этом график функции y=х 2,3 занимает среднее положение между y=х 2 и y=х 3 .

На слайде 13 рассмотренное поведение степенной функции обобщается в закономерности. Отмечается, что при 0<х<1 при увеличении показателя степени, уменьшается значение выражения х 5 < х 4 < х 3 , следовательно и √х 5 < √х 4 < √х 3 . Для х, большего 1, верно обратное утверждение - при увеличении показателя степени значение степенной функции увеличивается, то есть х 5 > х 4 > х 3 , следовательно, √х 5 > √х 4 > √х 3 .




Далее следует детальное рассмотрение поведения на координатной плоскости степенной функции y=х k , в которой показателем степени является неправильная дробь m/n, где m>n. на рисунке к описанию данной функции прилагается построенный график в первой четверти системы координат, который представляет собой ветвь параболы y=х 7/2 . Свойства функции для m/n>1 описаны на слайде 15 на примере графика y=х 7/2 . Отмечено, что она имеет область определения - луч 0 х у 7 -5 [-5;7) [-5;7] (-3;5] Найдите область определения функции, график которой изображен на рисунке. 5 -3 Область определения функции – значения, которые принимает независимая переменная х. Коломина Н.Н.

8 слайд

Описание слайда:

Множество значений функции. Множеством значений функции называется множество всех действительных значений функции у, которые она может принимать. Например, множеством значений функции у= х+1 является множество R, множеством значений функции является множество действительных чисел, больше или равных 1. у= Х2 +1 Коломина Н.Н.

9 слайд

Описание слайда:

Найдите множество значений функции, график которой изображен на рисунке. у х 0 -6 -4 6 6 (-4;6) [-6;6] (-6;6) [-4;6] Множество значений функции – значения, которые принимает зависимая переменная у. Коломина Н.Н.

10 слайд

Описание слайда:

Исследование функции на четность. Функция называется четной, если при всех значений х в области определения этой функции при изменения знака аргумента на противоположный значение функции не изменяется, т.е. . Например, парабола у= Х2 является четной функцией, т.к. (-Х2)= Х2 . График четной функции симметричен относительно оси оу. Коломина Н.Н.

11 слайд

Описание слайда:

На одном из следующих рисунков изображен график четной функции. Укажите этот график. х х х х у у у у График симметричен относительно оси Oу 0 0 0 0 Коломина Н.Н.

12 слайд

Описание слайда:

Функция называется нечетной, если при всех значениях х в области определения этой функции при изменении знака аргумента на противоположный функция изменяется только по знаку, т.е. . Например, функция у= Х3 – нечетная, т.к. (-Х)3 = -Х3. График нечетной функции симметричен относительно начала координат. Свойством четности или нечетности обладает не всякая функция. Например, функция не является ни четной, ни нечетной: Х2+ Х3 (-Х)2+ (-Х)3 = Х2 – Х3; Х2 + Х3 Х2 – Х3; = / Коломина Н.Н.

13 слайд

Описание слайда:

х х х х у у у у На одном из следующих рисунков изображен график нечетной функции. Укажите этот график. График симметричен относительно точки О. О О О О Коломина Н.Н.

14 слайд

Описание слайда:

Среди множества функций есть функции, значения которых с увеличением аргумента только возрастают или только убывают. Такие функции называются возрастающими или убывающими. Функция называется возрастающей в промежутке а х в, если для любых Х1 и, принадлежащих этому промежутку, при Х1 Х2 имеет место неравенство Определение промежутков возрастания и убывания /\ /\ Х2 /\ /\ 1 2 Функция называется убывающей в промежутке а х в, если для любых Х1 и Х2, принадлежащих этому промежутку, при Х1 Х2 имеет место неравенство /\ /\ /\ 2 1 > Коломина Н.Н.

15 слайд

Описание слайда:

[-6;7] [-5;-3] U [-3;7] [-3;2] х 0 2 6 -5 7 -3 -6 -2 3 На рисунке изображен график функции y = f(x), заданной на промежутке (-5;6). Укажите промежутки, где функция возрастает. у Коломина Н.Н.

16 слайд

Описание слайда:

y х 1 2 4 0 Нуль функции – значение х, при котором y = 0. На рисунке – это точки пересечения графика с осью Ох. На рисунке изображен график функции y = f(x). Укажите количество нулей функции. 0 Коломина Н.Н.

17 слайд

Описание слайда:

18 слайд

Описание слайда:

Исследование функции на монотонность. Как возрастающие, так и убывающие функции называются монотонными, а промежутки, в которых функция возрастает или убывает, - промежутками монотонности. Например, функция у= Х2 при х 0 монотонно возрастает. Функция у= Х3 на всей числовой оси монотонно возрастает, а функция у= -Х3 на всей числовой оси монотонно убывает. /\ /\ Коломина Н.Н.

19 слайд

Описание слайда:

Исследовать функцию на монотонность Функция у=х2 Функция у=х2 при х<0 монотонно убывает, при х>0 монотонно возрастает х -2 -1 0 1 2 у 4 1 0 1 4 Коломина Н.Н.

20 слайд

Описание слайда:

Обратная функция Если функция принимает каждое свое значение только при единственном значении х, то такую функцию называют обратимой. Например, функция у=3х+5 является обратимой, т.к. каждое значение у принимается при единственном значении аргумента х. Напротив, функция у= 3Х2 не является обратимой, поскольку, например, значение у=3 она принимает и при х=1, и при х=-1. Для всякой непрерывной функции (такой, которая не имеет точек разрыва) существует монотонная однозначная и непрерывная обратная функция. Коломина Н.Н.

21 слайд

Описание слайда:

Диктант Найти область значений Исследовать промежутки возрастания и убывания функции. № Вариант-1 № Вариант-2 Найти область определения функции 1 1 2 2 Указать способ задания функции 3 3 Исследовать функцию на четность 4 4 5 5 х -2 -1 0 1 у 3 5 7 9 Коломина Н.Н.

22 слайд

Описание слайда:

Функции. 1. Линейная функция 2.Квадратичная функция 3.Степенная функция 4.Показательная функция 5.Догарифмическая функция 6. Тригонометрическая функция Коломина Н.Н.

23 слайд

Описание слайда:

Линейная функция y = kx + b k – угловой коэффициент b x y α 0 b – свободный коэффициент k = tg α Коломина Н.Н.

24 слайд

Функции и их свойства

y

y = f( x )

x

0


Понятие функции

Если каждому значению х из некоторого множества чисел поставлено в соответствие число у , то говорят, что на этом множ е стве задана функция у(х) .

При этом х называют независимой переменной или аргументом ,

а у зависимой переменной или функцией .

y = f(x)


Область определения и

множество значений функции

Областью определения функции называют множество всех значений, которые может принимать ее аргумент.

Обозначается D(y)

Множество значений (или область значений) функции – это множество всех значений переменной у.

Обозначается E(y)


Способы задания функции:

  • аналитический (с помощью формулы);
  • графический (с помощью графика);
  • табличный (с помощью таблицы значений);
  • словесный (правило задания функции описывается словами).

f(x 2) . (Функцию называют убывающей, если большему значению аргумента соответствует меньшее значение функции) " width="640"

Свойства функций:

монотонность

Функцию y = f(x) называют возрастающей х 1 2 , выполняется условие f(x 1 ) 2 ) .

(Функцию называют возрастающей, если большему большее значение функции)

Функцию y = f(x) называют убывающей на множестве Х, если для любых двух элементов из этого множества, таких, что х 1 2 , выполняется условие f(x 1 ) f(x 2 ) .

(Функцию называют убывающей, если большему значению аргумента соответствует меньшее значение функции)


m . Функцию y = f(x) называют ограниченной сверху на множестве Х, если существует число M , такое, что для любого значения х ∊ Х, выполняется неравенство f(x) M . Если функция ограничена и снизу и сверху, то ее называют ограниченной " width="640"

Свойства функций:

ограниченность

Функцию y = f(x) называют ограниченной снизу m Х, выполняется неравенство

f(x) m .

Функцию y = f(x) называют ограниченной сверху на множестве Х, если существует число M , такое, что для любого значения х Х, выполняется неравенство

f(x) M .

Если функция ограничена и снизу и сверху, то ее называют ограниченной


Свойства функций:

наибольшее и наименьшее значения функции

Число m называют наименьшим значением функции y = f(x) на множестве Х, если:

существует число х о Х такое, что f( х o ) = m ;

для любого значения х Х выполняется неравенство

f(x) ≥ f(x o ) .

Число М называют наибольшим значением функции y = f(x) на множестве Х, если:

существует число х о Х такое, что f( х o ) = М ;

для любого значения х Х выполняется неравенство

f(x) ≤ f(x o ) .


Свойства функций:

четность или нечетность

Функцию y = f(x) , х Х называют четной f( - x) = f(x) .

График четной оси ординат .

Функцию y = f(x) , х Х называют нечетной , если для любого значения х из множества Х выполняется равенство f( x) = f(x) .

График нечетной функции симметричен относительно начала координат .


f(x o) . Точки максимума и минимума объединяют общим названием – точки экстремума " width="640"

Свойства функций:

точки экстремума

Точку х о называют точкой максимума функции y = f(x) о ) выполняется неравенство

f(x) f(x o ) .

Точку х о называют точкой минимума функции y = f(x) , если у этой точки существует окрестность, для всех точек которой (кроме самой точки х о ) выполняется неравенство

f(x) f(x o ) .

Точки максимума и минимума объединяют общим названием – точки экстремума


Свойства функций:

периодичность

Говорят, что функция y = f(x) , х Х имеет период Т , если для любого х Х выполняется равенство

f(x – Т ) = f(x) = f(x + T) .

Функцию, имеющую отличный от нуля период называют периодической .

Если функция y = f(x) , х Х имеет период Т, то любое число, кратное Т (т.е. число вида kT , k Z ), также является ее периодом.


График функции

Графиком функции называется множество всех точек координатной плоскости (х; у(х)) , абсциссы которых равны значениям независимой переменной из области определения этой функции, а ординаты – соответствующим значениям функции.

(ордината) y

y = f( x )

x (абсцисса)


Основные элементарные

функции, их свойства

и графики


0 ; б) убывает, если k . Не ограничена ни снизу, ни сверху. Нет ни наибольшего, ни наименьшего значений. Функция непрерывна на множестве (–  ; + ) . " width="640"

Линейная функция y=kx+b

Свойства линейной функции y = kx + b :

  • D(f) = (– ; + ) .
  • E(f) = (– ; + ) .
  • Если b = 0 , то функция нечетная .
  • а) Нули функции: ( b/k; 0) ;

б) точка пересечения с Оу: (0; b) .

  • а) возрастает , если k 0 ;

б) убывает , если k .

  • Не ограничена ни снизу, ни сверху.
  • (– ; + ) .

0 y = kx + b , k Линейная функция y=kx+b y 0 x b b k " width="640"

y = kx + b , k0

y = kx + b , k

Линейная функция y=kx+b


0 , то (–  ; 0) и (0; + ) – промежутки убывания функции. Не ограничена ни снизу, ни сверху. Нет ни наибольшего, ни наименьшего значений. Функция непрерывна на каждом из промежутков (–  ; 0) и (0; + ) . " width="640"

k

у =

Обратная пропорциональность

x

Свойства функции y = k/x :

  • D(f) = (– ; 0) (0; + ) .
  • E(f) = (– ; 0) (0; + ) .
  • Функция нечетная.
  • а) Нули функции: нет ;

б) точка пересечения с Оу: нет .

  • а) если k , то (– ; 0) и (0; + ) – промежутки возрастания функции ;

б) если k 0 , то (– ; 0) и (0; + ) – промежутки убывания функции.

  • Не ограничена ни снизу, ни сверху.
  • Нет ни наибольшего, ни наименьшего значений.
  • Функция непрерывна на каждом из промежутков

(– ; 0) и (0; + ) .


0 x x x 0 " width="640"

у =

Обратная пропорциональность

у = , k 0

у = , k 0


0: D(f) = (–  ; + ) . E(f) = – промежуток убывания функции. Ограничена снизу, не ограничена сверху. а) у наим. = 0; б) у наиб. – не существует. Непрерывна на множестве (–  ; + ) . Выпукла вниз. " width="640"

Квадратичная функция y= k x 2

Свойства функции y = kx 2 при k 0 :

  • D(f) = (– ; + ) .
  • E(f) = – промежуток убывания функции.

    • Ограничена снизу, не ограничена сверху.
    • а) у наим. = 0;

    б) у наиб. – не существует.

    • Непрерывна на множестве (– ; + ) .
    • Выпукла вниз.

    Квадратичная функция y= k x 2

    Свойства функции y = kx 2 при k :

    • D(f) = (– ; + ) .
    • E(f) = (– ; 0] .
    • Функция четная .
    • а) Нули функции: (0; 0) ;

    б) точка пересечения с Оу: (0; 0) .